Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mélanie Bonhivers is active.

Publication


Featured researches published by Mélanie Bonhivers.


Journal of Biological Chemistry | 1998

The Aquaporins, Blueprints for Cellular Plumbing Systems

Peter Agre; Mélanie Bonhivers; Mario J. Borgnia

Membrane Water Permeability Plasma membranes provide an effective barrier to the extracellular environment. Water was long believed to move through lipid bilayers by simple diffusion; however, membranes from different tissues vary in their permeability to water. The variability is particularly evident in mammalian kidney where proximal tubules and descending thin limbs of Henle’s loop have constitutively high water permeability and are responsible for reabsorption of more than 150 liters per day in adult humans. In contrast, ascending thin limbs have very low water permeability. Renal distal tubules empty into collecting ducts where stimulation with vasopressin causes an increase in water permeability (see Ref. 1 for review). These observations led to the suggestion that specialized water transport molecules must exist in membranes with intrinsically high water permeability. Nevertheless, despite extensive studies, the molecular identity of water transport proteins remained elusive until recently. The well defined features of membrane water permeability permitted serendipitous identification of the first known water channel. While purifying the 32-kDa subunit of the red cell Rh blood group antigen, a new 28-kDa polypeptide was discovered (2). Detailed biochemical studies of this newly identified tetrameric membrane protein were made easy by its low solubility in N-lauroylsarcosine, which permitted simple purification (3). The abundance of the protein in rat renal proximal tubules and descending thin limbs (2) sparked the idea that the 28-kDa polypeptide may be the long sought water channel, and its unique N-terminal amino acid sequence permitted cloning from an erythroid cDNA library (4).


Journal of Biological Chemistry | 1998

Aquaporins in Saccharomyces GENETIC AND FUNCTIONAL DISTINCTIONS BETWEEN LABORATORY AND WILD-TYPE STRAINS

Mélanie Bonhivers; Jennifer M. Carbrey; Stephen J. Gould; Peter Agre

Aquaporin water channel proteins mediate the transport of water across cell membranes in numerous species. TheSaccharomyces genome data base contains an open reading frame (here designated AQY1) that encodes a protein with strong homology to aquaporins. AQY1 from laboratory and wild-type strains of Saccharomyces were expressed inXenopus oocytes to determine the coefficients of osmotic water permeability (Pf). Oocytes injected with wild-typeAQY1 cRNAs exhibit high Pf values, whereas oocytes injected with AQY1 cRNAs from laboratory strains exhibit low Pf values and have reduced levels of Aqy1p due to two amino acid substitutions. When the AQY1 gene was deleted from a wild-type yeast and cells were cultured in vitro with cycled hypo-osmolar or hyper-osmolar stresses, theAQY1 null yeast showed significantly improved viability when compared with the parental wild-type strain. We conclude thatSaccharomyces cerevisiae contains at least one aquaporin gene, but it is not functional in laboratory strains due to apparent negative selection pressures resulting from in vitromethods.


PLOS Biology | 2008

Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated.

Mélanie Bonhivers; Sophie Nowacki; Nicolas Landrein; Derrick R. Robinson

Trypanosoma brucei is a protozoan parasite that is used as a model organism to study such biological phenomena as gene expression, protein trafficking, and cytoskeletal biogenesis. In T. brucei, endocytosis and exocytosis occur exclusively through a sequestered organelle called the flagellar pocket (FP), an invagination of the pellicular membrane. The pocket is the sole site for specific receptors thus maintaining them inaccessible to components of the innate immune system of the mammalian host. The FP is also responsible for the sorting of protective parasite glycoproteins targeted to, or recycling from, the pellicular membrane, and for the removal of host antibodies from the cell surface. Here, we describe the first characterisation of a flagellar pocket cytoskeletal protein, BILBO1. BILBO1 functions to form a cytoskeleton framework upon which the FP is made and which is also required and essential for FP biogenesis and cell survival. Remarkably, RNA interference (RNAi)-mediated ablation of BILBO1 in insect procyclic-form parasites prevents FP biogenesis and induces vesicle accumulation, Golgi swelling, the aberrant repositioning of the new flagellum, and cell death. Cultured bloodstream-form parasites are also nonviable when subjected to BILBO1 RNAi. These results provide the first molecular evidence for cytoskeletally mediated FP biogenesis.


The EMBO Journal | 1996

FhuA, a transporter of the Escherichia coli outer membrane, is converted into a channel upon binding of bacteriophage T5.

Mélanie Bonhivers; Alexandre Ghazi; Pascale Boulanger; Lucienne Letellier

The Escherichia coli outer membrane protein FhuA catalyzes the transport of Fe3+(‐)ferrichrome and is the receptor of phage T5 and phi 80. The purified protein inserted into planar lipid bilayers showed no channel activity. Binding of phage T5 and FhuA resulted in the appearance of high conductance ion channels. The electrophysiological characteristics of the channels (conductance, kinetic behavior, substates, ion selectivity including the effect of ferrichrome) showed similarities with those of the channel formed by a FhuA derivative from which the ‘gating loop’ (delta 322–355) had been removed. binding of phage T5 to FhuA in E.coli cells conferred SDS sensitivity to the bacteria, suggesting that such channels also exist in vivo. These data suggest that binding of T5 to loop 322–355 of FhuA, which constitutes the T5 binding site, unmasks an inner channel in FhuA. Both T5 and ferrichrome bind to the closed state of the channel but only T5 can trigger its opening.


PLOS ONE | 2007

Basal Body Positioning Is Controlled by Flagellum Formation in Trypanosoma brucei

Sabrina Absalon; Linda Kohl; Carole Branche; Thierry Blisnick; Géraldine Toutirais; Filippo Rusconi; Jacky Cosson; Mélanie Bonhivers; Derrick R. Robinson; Philippe Bastin

To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum.


Journal of Cell Science | 2006

NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei

Lydie C. Pradel; Mélanie Bonhivers; Nicolas Landrein; Derrick R. Robinson

The NIMA-related kinase 2 (NEK 2) has important cell cycle functions related to centriole integrity and splitting. Trypanosoma brucei does not possess centrioles, however, cytokinesis is coupled to basal body separation events. Here we report the first functional characterisation of a T. brucei basal body-cytoskeletal NIMA-related kinase (NRK) protein, TbNRKC. The TbNRKC kinase domain has high amino acid identity with the human NEK1 kinase domain (50%) but also shares 42% identity with human NEK2. TbNRKC is expressed in bloodstream and procyclic cells and functions as a bona fide kinase in vitro. Remarkably, RNAi knockdown of TbNRKC and overexpression of kinase-dead TbNRKC in procyclic forms induces the accumulation of cells with four basal bodies, whereas overexpression of active protein produces supernumary basal bodies and blocks cytokinesis. TbNRKC is located on mature and immature basal bodies and is the first T. brucei NRK to be found associated with the basal body cytokinesis pathway.


Journal of Cell Science | 2008

Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei

Sabrina Absalon; Thierry Blisnick; Mélanie Bonhivers; Linda Kohl; Nadège Cayet; Géraldine Toutirais; Johanna Buisson; Derrick R. Robinson; Philippe Bastin

In trypanosomes, the flagellum is rooted in the flagellar pocket, a surface micro-domain that is the sole site for endocytosis and exocytosis. By analysis of anterograde or retrograde intraflagellar transport in IFT88RNAi or IFT140RNAi mutant cells, we show that elongation of the new flagellum is not required for flagellar pocket formation but is essential for its organisation, orientation and function. Transmission electron microscopy revealed that the flagellar pocket exhibited a modified shape (smaller, distorted and/or deeper) in cells with abnormally short or no flagella. Scanning electron microscopy analysis of intact and detergent-extracted cells demonstrated that the orientation of the flagellar pocket collar was more variable in trypanosomes with short flagella. The structural protein BILBO1 was present but its localisation and abundance was altered. The membrane flagellar pocket protein CRAM leaked out of the pocket and reached the short flagella. CRAM also accumulated in intracellular compartments, indicating defects in routing of resident flagellar pocket proteins. Perturbations of vesicular trafficking were obvious; vesicles were observed in the lumen of the flagellar pocket or in the short flagella, and fluid-phase endocytosis was drastically diminished in non-flagellated cells. We propose a model to explain the role of flagellum elongation in correct flagellar pocket organisation and function.


Research in Microbiology | 1999

PHAGE DNA TRANSPORT ACROSS MEMBRANES

Lucienne Letellier; Laure Plançon; Mélanie Bonhivers; Pascale Boulanger

Phage nucleic acid transport is atypical in bacterial membrane transport: it is unidirectional and concerns a unique molecule the size of which may represent 50 times that of the bacterium. The rate of DNA transport, although it varies from one phage to another, can reach values as high as 3000 bp s(-1). This raises the following questions which will be discussed in this review. Is there a single mechanism of transport for all types of phages? Does the phage genome cross the outer and inner membranes by a unique mechanism? Is it transported as a free molecule or in association with proteins? How does it avoid periplasmic nucleases? Is such transport dependent on phage and/or host cell components? What is the driving force for transport? Recent cryoelectron microscopy experiments will be presented which show that it is possible to encapsulate a phage genome (121000 bp) into unilamellar liposomes. The interest of such a model system in gene delivery and in the study of the mechanisms of DNA compaction will be discussed.


Journal of Molecular Biology | 2002

Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5.

Laure Plançon; C Janmot; M le Maire; Michel Desmadril; Mélanie Bonhivers; Lucienne Letellier; Pascale Boulanger

Binding of bacteriophage T5 to Escherichia coli cells is mediated by specific interactions between the receptor-binding protein pb5 (67.8 kDa) and the outer membrane iron-transporter FhuA. A histidine-tagged form of pb5 was overproduced and purified. Isolated pb5 is monomeric and organized mostly as beta-sheets (51%). pb5 functionality was attested in vivo by its ability to impair infection of E. coli cells by phage T5 and Phi80, and to prevent growth of bacteria on iron-ferrichrome as unique iron source. pb5 was functional in vitro, since addition of an equimolar concentration of pb5 to purified FhuA prevented DNA release from phage T5. However, pb5 alone was not sufficient for the conversion of FhuA into an open channel. Direct interaction of pb5 with FhuA was demonstrated by isolating a pb5/FhuA complex using size-exclusion chromatography. The stoichiometry, 1 mol of pb5/1 mol of FhuA, was deduced from its molecular mass, established by analytical ultracentrifugation after determination of the amount of bound detergent. SDS-PAGE and differential scanning calorimetry experiments highlighted the great stability of the complex: (i) it was not dissociated by 2% SDS even when the temperature was raised to 70 degrees C; (ii) thermal denaturation of the complex occurred at 85 degrees C, while pb5 and FhuA were denatured at 45 degrees C and 74 degrees C, respectively. The stability of the complex renders it suitable for high-resolution structural studies, allowing future analysis of conformational changes into both FhuA and pb5 upon adsorption of the virus to its host.


Parasites & Vectors | 2008

A monoclonal antibody marker for the exclusion-zone filaments of Trypanosoma brucei.

Mélanie Bonhivers; Nicolas Landrein; Marion Decossas; Derrick R. Robinson

BackgroundTrypanosoma brucei is a haemoflagellate pathogen of man, wild animals and domesticated livestock in central and southern Africa. In all life cycle stages this parasite has a single mitochondrion that contains a uniquely organised genome that is condensed into a flat disk-like structure called the kinetoplast. The kinetoplast is essential for insect form procyclic cells and therefore is a potential drug target. The kinetoplast is unique in nature because it consists of novel structural proteins and thousands of circular, interlocking, DNA molecules (kDNA). Secondly, kDNA replication is critically timed to coincide with nuclear S phase and new flagellum biogenesis. Thirdly, the kinetoplast is physically attached to the flagellum basal bodies via a structure called the tripartite attachment complex (TAC). The TAC consists of unilateral filaments (within the mitochondrion matrix), differentiated mitochondrial membranes and exclusion-zone filaments that extend from the distal end of the basal bodies. To date only one protein, p166, has been identified to be a component of the TAC.ResultsIn the work presented here we provide data based on a novel EM technique developed to label and characterise cytoskeleton structures in permeabilised cells without extraction of mitochondrion membranes. We use this protocol to provide data on a new monoclonal antibody reagent (Mab 22) and illustrate the precise localisation of basal body-mitochondrial linker proteins. Mab 22 binds to these linker proteins (exclusion-zone filaments) and provides a new tool for the characterisation of cytoskeleton mediated kinetoplast segregation.ConclusionThe antigen(s) recognised by Mab 22 are cytoskeletal, insensitive to extraction by high concentrations of non-ionic detergent, extend from the proximal region of basal bodies and bind to the outer mitochondrial membrane. This protein(s) is the first component of the TAC exclusion-zone fibres to be identified. Mab 22 will therefore be important in characterising TAC biogenesis.

Collaboration


Dive into the Mélanie Bonhivers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Landrein

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Denis Dacheux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annelise Sahin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Agre

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Aminata Touré

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anna Albisetti

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Célia Florimond

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge