Denis Dacheux
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis Dacheux.
Infection and Immunity | 2000
Denis Dacheux; Bertrand Toussaint; Marceline Richard; Guy Brochier; Jacques Croize; Ina Attree
ABSTRACT Pseudomonas aeruginosa, an opportunistic pathogen responsible most notably for severe infections in cystic fibrosis (CF) patients, utilizes the type III secretion system for eukaryotic cell intoxication. The CF clinical isolate CHA shows toxicity towards human polymorphonuclear neutrophils (PMNs) which is dependent on the type III secretion system but independent of the cytotoxin ExoU. In the present study, the cytotoxicity of this strain toward human and murine macrophages was demonstrated. In low-multiplicity infections (multiplicity of infection, 10), approximately 40% of the cells die within 60 min. Analysis of CHA-infected cells by transmission electron microscopy, DNA fragmentation assay, and Hoechst staining revealed the hallmarks of oncosis: cellular and nuclear swelling, disintegration of the plasma membrane, and absence of DNA fragmentation. A panel of 29P. aeruginosa CF isolates was screened for type III system genotype, protein secretion profile, and cytotoxicity toward PMNs and macrophages. This study showed that six CF isolates were able to induce rapid ExoU-independent oncosis on phagocyte cells.
Infection and Immunity | 2002
Denis Dacheux; Olivier Epaulard; Arjan de Groot; Benoit Guery; Rozen Leberre; Ina Attree; Benoit Polack; Bertrand Toussaint
ABSTRACT Pseudomonas aeruginosa clinical cystic fibrosis isolate CHA was mutagenized with Tn5Tc to identify new genes involved in type III secretion system (TTSS)-dependent cytotoxicity toward human polymorphonuclear neutrophils. Among 25 mutants affected in TTSS function, 14 contained the insertion at different positions in the aceAB operon encoding the PDH-E1 and -E2 subunits of pyruvate dehydrogenase. In PDH mutants, no transcriptional activation of TTSS genes in response to calcium depletion occurred. Expression in trans of ExsA restored TTSS function and cytotoxicity.
Infection and Immunity | 2001
Denis Dacheux; Ina Attree; Bertrand Toussaint
ABSTRACT Twelve Pseudomonas aeruginosa cystic fibrosis isolates that are not able to exert a type III secretion system (TTSS)-dependent cytotoxicity towards phagocytes have been further studied. The strains, although possessing TTSS genes and exsA, which encodes a positive regulator of the TTSS regulon, showed no transcriptional activation of the exsCBA regulatory operon. The expression of exsA in trans restored the in vitro secretion of TTSS proteins and ex vivo cytotoxicity.
PLOS Neglected Tropical Diseases | 2009
Christiane Giroud; Florence Ottones; Virginie Coustou; Denis Dacheux; Nicolas Biteau; Benjamin Miezan; Nick Van Reet; Mark Carrington; Felix Doua; Théo Baltz
Background Human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense remains highly prevalent in west and central Africa and is lethal if left untreated. The major problem is that the disease often evolves toward chronic or asymptomatic forms with low and fluctuating parasitaemia producing apparently aparasitaemic serological suspects who remain untreated because of the toxicity of the chemotherapy. Whether the different types of infections are due to host or parasite factors has been difficult to address, since T. b. gambiense isolated from patients is often not infectious in rodents thus limiting the variety of isolates. Methodology/Principal findings T. b. gambiense parasites were outgrown directly from the cerebrospinal fluid of infected patients by in vitro culture and analyzed for their molecular polymorphisms. Experimental murine infections showed that these isolates could be clustered into three groups with different characteristics regarding their in vivo infection properties, immune response and capacity for brain invasion. The first isolate induced a classical chronic infection with a fluctuating blood parasitaemia, an invasion of the central nervous system (CNS), a trypanosome specific-antibody response and death of the animals within 6–8 months. The second group induced a sub-chronic infection resulting in a single wave of parasitaemia after infection, followed by a low parasitaemia with no parasites detected by microscope observations of blood but detected by PCR, and the presence of a specific antibody response. The third isolate induced a silent infection characterised by the absence of microscopically detectable parasites throughout, but infection was detectable by PCR during the whole course of infection. Additionally, specific antibodies were barely detectable when mice were infected with a low number of this group of parasites. In both sub-chronic and chronic infections, most of the mice survived more than one year without major clinical symptoms despite an early dissemination and growth of the parasites in different organs including the CNS, as demonstrated by bioluminescent imaging. Conclusions/Significance Whereas trypanosome characterisation assigned all these isolates to the homogeneous Group I of T. b. gambiense, they clearly induce very different infections in mice thus mimicking the broad clinical diversity observed in HAT due to T. b. gambiense. Therefore, these murine models will be very useful for the understanding of different aspects of the physiopathology of HAT and for the development of new diagnostic tools and drugs.
PLOS ONE | 2012
Denis Dacheux; Nicolas Landrein; Magali Thonnus; Annelise Sahin; Harald Wodrich; Derrick R. Robinson; Mélanie Bonhivers
In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function.
Journal of Biological Chemistry | 2007
Nathalie Boucher; Denis Dacheux; Christiane Giroud; Théo Baltz
TbNOP86 and TbNOP66 are two novel nucleolar proteins isolated in Trypanosoma brucei. They share 92.6% identity, except for an additional C-terminal domain of TbNOP86 of 182 amino acids in length. Both proteins are found in Trypanosomatidae, but similarity to other eukaryotic proteins could not be found. TbNOP86 and TbNOP66 are expressed at similar level in procyclic and bloodstream forms, although the relative level of expression of TbNOP66 is 11 times lower. TbNOP86 undergoes post-translational modifications, as it is found predominantly at 110 kDa compared with the predicted 86 kDa. Immunofluorescence of overexpressed ty-tagged TbNOP86 and TbNOP66 showed that both proteins accumulated in the nucleolus of G1 cells. This was confirmed by the co-localization of an endogenous TbNOP86-myc with the nucleolar protein Nopp140. TbNOP86-ty localization is cell cycle-regulated, because it colocalizes with the mitotic spindle in mitotic cells. TbNOP86 is required for mitotic progression in both life stages as depleted cells are enriched in the G2/M phase. In procyclic cells, a reduced growth rate is accompanied by an accumulation of zoids (0N1K), 2N1K, and multinucleated cells (xNyK). The 2N1K cells are blocked in late mitosis as nucleolar segregation is completed. TbNOP86 depletion in bloodstream form caused a drastic growth inhibition producing cells bearing two kinetoplasts and an enlarged nucleus (1N*2K), followed by an accumulation of 2N2K cells with connected nuclei and xNyK cells. These studies of TbNOP86 provide a more comprehensive account of proteins involved in mitotic events in trypanosomes and should lead to the identification of partners with similar function.
PLOS ONE | 2015
Tetsuro Komatsu; Denis Dacheux; Florian Kreppel; Kyosuke Nagata; Harald Wodrich
Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes.
Journal of Virology | 2015
Ruben Martinez; Pascale Schellenberger; Daven Vasishtan; Cindy Aknin; Sisley Austin; Denis Dacheux; Fabienne Rayne; Alistair Siebert; Zsolt Ruzsics; Kay Gruenewald; Harald Wodrich
ABSTRACT Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rupture are major determinants of entry-related sorting of incoming adenovirus virions. Furthermore, by using electron cryomicroscopy, as well as penton- and protein VI-specific antibodies, we show that the amphipathic helix of protein VI contributes to capsid stability by preventing premature disassembly and deployment of pentons and protein VI. Thus, the helix has a dual function in maintaining the metastable state of the capsid by preventing premature disassembly and mediating efficient membrane lysis to evade lysosomal targeting. Based on these findings and structural data from cryo-electron microscopy, we suggest a refined disassembly mechanism upon entry. IMPORTANCE In this study, we show the intricate connection of adenovirus particle stability and the entry-dependent release of the membrane-lytic capsid protein VI required for endosomal escape. We show that the amphipathic helix of the adenovirus internal protein VI is required to stabilize pentons in the particle while coinciding with penton release upon entry and that release of protein VI mediates membrane lysis, thereby preventing lysosomal sorting. We suggest that this dual functionality of protein VI ensures an optimal disassembly process by balancing the metastable state of the mature adenovirus particle.
Journal of Cell Science | 2015
Denis Dacheux; Benoit Roger; Christophe Bosc; Nicolas Landrein; Emmanuel Roche; Lucie Chansel; Thomas Trian; Annie Andrieux; Aline Papaxanthos-Roche; Roger Marthan; Derrick R. Robinson; Mélanie Bonhivers
ABSTRACT Cilia and flagella are microtubule-based organelles present at the surface of most cells, ranging from protozoa to vertebrates, in which these structures are implicated in processes from morphogenesis to cell motility. In vertebrate neurons, microtubule-associated MAP6 proteins stabilize cold-resistant microtubules through their Mn and Mc modules, and play a role in synaptic plasticity. Although centrioles, cilia and flagella have cold-stable microtubules, MAP6 proteins have not been identified in these organelles, suggesting that additional proteins support this role in these structures. Here, we characterize human FAM154A (hereafter referred to as hSAXO1) as the first human member of a widely conserved family of MAP6-related proteins specific to centrioles and cilium microtubules. Our data demonstrate that hSAXO1 binds specifically to centriole and cilium microtubules. We identify, in vivo and in vitro, hSAXO1 Mn modules as responsible for microtubule binding and stabilization as well as being necessary for ciliary localization. Finally, overexpression and knockdown studies show that hSAXO1 modulates axoneme length. Taken together, our findings suggest a fine regulation of hSAXO1 localization and important roles in cilium biogenesis and function.
PLOS Pathogens | 2015
Célia Florimond; Annelise Sahin; Keni Vidilaseris; Gang Dong; Nicolas Landrein; Denis Dacheux; Anna Albisetti; Edward H. Byard; Mélanie Bonhivers; Derrick R. Robinson
The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the annulus/horseshoe shaped flagellar pocket collar (FPC). To date the only known component of the FPC is the protein BILBO1, a cytoskeleton protein that has a N-terminus that contains an ubiquitin-like fold, two EF-hand domains, plus a large C-terminal coiled-coil domain. BILBO1 has been shown to bind calcium, but in this work we demonstrate that mutating either or both calcium-binding domains prevents calcium binding. The expression of deletion or mutated forms of BILBO1 in trypanosomes and mammalian cells demonstrate that the coiled-coil domain is necessary and sufficient for the formation of BILBO1 polymers. This is supported by Yeast two-hybrid analysis. Expression of full-length BILBO1 in mammalian cells induces the formation of linear polymers with comma and globular shaped termini, whereas mutation of the canonical calcium-binding domain resulted in the formation of helical polymers and mutation in both EF-hand domains prevented the formation of linear polymers. We also demonstrate that in T. brucei the coiled-coil domain is able to target BILBO1 to the FPC and to form polymers whilst the EF-hand domains influence polymers shape. This data indicates that BILBO1 has intrinsic polymer forming properties and that binding calcium can modulate the form of these polymers. We discuss whether these properties can influence the formation of the FPC.