Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amiram Hirshfeld is active.

Publication


Featured researches published by Amiram Hirshfeld.


Nature Structural & Molecular Biology | 2009

Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation

Shivani Ahuja; Viktor Hornak; Elsa C. Y. Yan; Natalie Syrett; Joseph A. Goncalves; Amiram Hirshfeld; Martine Ziliox; Thomas P. Sakmar; Mordechai Sheves; Philip J. Reeves; Steven O. Smith; Markus Eilers

The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein–coupled receptor.


Journal of Biological Chemistry | 2009

Location of the Retinal Chromophore in the Activated State of Rhodopsin

Shivani Ahuja; Evan Crocker; Markus Eilers; Viktor Hornak; Amiram Hirshfeld; Martine Ziliox; Natalie Syrett; Philip J. Reeves; H. Gobind Khorana; Mordechai Sheves; Steven O. Smith

Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific 13C-labeled sites located on the β-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly188 (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the β-ionone ring moves to a position between Met207 and Phe208 on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the Cϵ carbons of Lys296 (H7) and Met44 (H1) and between Gly121 (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu122 (H3) and His211 (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.


Journal of the American Chemical Society | 2009

6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin.

Shivani Ahuja; Markus Eilers; Amiram Hirshfeld; Elsa C. Y. Yan; Martine Ziliox; Thomas P. Sakmar; Mordechai Sheves; Steven O. Smith

The visual pigment rhodopsin is unique among the G protein-coupled receptors in having an 11-cis retinal chromophore covalently bound to the protein through a protonated Schiff base linkage. The chromophore locks the visual receptor in an inactive conformation through specific steric and electrostatic interactions. This efficient inverse agonist is rapidly converted to an agonist, the unprotonated Schiff base of all-trans retinal, upon light activation. Here, we use magic angle spinning NMR spectroscopy to obtain the (13)C chemical shifts (C5-C20) of the all-trans retinylidene chromophore and the (15)N chemical shift of the Schiff base nitrogen in the active metarhodopsin II intermediate. The retinal chemical shifts are sensitive to the conformation of the chromophore and its molecular interactions within the protein-binding site. Comparison of the retinal chemical shifts in metarhodopsin II with those of retinal model compounds reveals that the Schiff base environment is polar. In particular, the (13)C15 and (15)Nepsilon chemical shifts indicate that the C horizontal lineN bond is highly polarized in a manner that would facilitate Schiff base hydrolysis. We show that a strong perturbation of the retinal (13)C12 chemical shift observed in rhodopsin is reduced in wild-type metarhodopsin II and in the E181Q mutant of rhodopsin. On the basis of the T(1) relaxation time of the retinal (13)C18 methyl group and the conjugated retinal (13)C5 and (13)C8 chemical shifts, we have determined that the conformation of the retinal C6-C7 single bond connecting the beta-ionone ring and the retinylidene chain is 6-s-cis in both the inactive and the active states of rhodopsin. These results are discussed within the general framework of ligand-activated G protein-coupled receptors.


Nature Communications | 2016

Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation

Naoki Kimata; Andreyah Pope; Markus Eilers; Chikwado A. Opefi; Martine Ziliox; Amiram Hirshfeld; Ekaterina Zaitseva; Reiner Vogel; Mordechai Sheves; Philip J. Reeves; Steven O. Smith

The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiffs base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation.


Journal of Physical Chemistry B | 2012

Structural Transitions of Transmembrane Helix 6 in the Formation of Metarhodopsin I

Markus Eilers; Joseph A. Goncalves; Shivani Ahuja; Colleen Kirkup; Amiram Hirshfeld; Carlos Simmerling; Philip J. Reeves; Mordechai Sheves; Steven O. Smith

Absorption of light by the visual pigment rhodopsin triggers a rapid cis-trans photoisomerization of its retinal chromophore and a series of conformational changes in both the retinal and protein. The largest structural change is an outward tilt of transmembrane helix H6 that increases the separation of the intracellular ends of H6 and H3 and opens up the G-protein binding site. In the dark state of rhodopsin, Glu247 at the intracellular end of H6 forms a salt bridge with Arg135 on H3 to tether H6 in an inactive conformation. The Arg135-Glu247 interaction is broken in the active state of the receptor, and Arg135 is then stabilized by interactions with Tyr223, Met257, and Tyr306 on helices H5, H6, and H7, respectively. To address the mechanism of H6 motion, solid-state NMR measurements are undertaken of Metarhodopsin I (Meta I), the intermediate preceding the active Metarhodopsin II (Meta II) state of the receptor. (13)C NMR dipolar recoupling measurements reveal an interhelical contact of (13)Cζ-Arg135 with (13)Cε-Met257 in Meta I but not with (13)Cζ-Tyr223 or (13)Cζ-Tyr306. These observations suggest that helix H6 has rotated in the formation of Meta I but that structural changes involving helices H5 and H7 have not yet occurred. Together, our results provide insights into the sequence of events leading up to the outward motion of H6, a hallmark of G protein-coupled receptor activation.


Biochemistry | 2013

Retinal β-ionone ring-salinixanthin interactions in xanthorhodopsin: a study using artificial pigments.

Elena Smolensky Koganov; Amiram Hirshfeld; Mordechai Sheves

Xanthorhodopsin (xR) is a retinal protein that contains, in addition to the retinal chromophore, a carotenoid (salinixanthin) that functions as a light-harvesting antenna [Balashov, S. P., et al. (2005) Science 309, 2061-2064]. The center-center distance between the two polyene chains is 12-13 Å, but the distance between the two rings of retinal and salinixanthin is surprisingly small (~5 Å) with an angle of ~45° [Luecke, H., et al. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 16561-16565]. We aimed to clarify the role of the β-ionone ring in the binding of retinal to apo-xR, as well as a possible role that the β-ionone ring plays in fixation of the salinixanthin 4-keto ring. The binding of native retinal and series of synthetic retinal analogues modified in the β-ionone ring to apo-xR was monitored by absorption and circular dichroism (CD) spectroscopies. The results indicate that the β-ionone ring modification significantly affected formation of the retinal-protein covalent bond as well as the pigment absorption and CD spectra. It was observed that several retinal analogues, modified in the retinal β-ionone ring, did not bind to apo-xR and did not form the pigment. Also, none of these analogues induced the fixation of the salinixanthin 4-keto ring. In addition, we show that the native retinal within its binding site adopts exclusively the 6-s-trans ring-chain conformation.


Journal of Physical Chemistry A | 2016

Isotope Labeling Study of Retinal Chromophore Fragmentation

Lihi Musbat; Maria Nihamkin; Shany Ytzhak; Amiram Hirshfeld; Noga Friedman; Jonathan M. Dilger; Mordechai Sheves; Yoni Toker

Previous studies have shown that the gas-phase fragmentation of the retinal chromophore after S0-S1 photoexcitation results in a prominent fragment of mass 248 which cannot be explained by the cleavage of any single bond along the polyene chain. It was therefore theorized that the fragmentation mechanism involves a series of isomerizations and cyclization processes, and two mechanisms for these processes were suggested. Here we used isotope labeling MS-MS to provide conclusive support for the fragmentation mechanism suggested by Coughlan et al. (J. Phys. Chem. Lett. 2014, 5, 3195).


Journal of the American Society for Mass Spectrometry | 2018

Action and Ion Mobility Spectroscopy of a Shortened Retinal Derivative

Lihi Musbat; Shirrel Assis; Jonathan M. Dilger; Tarick J. El-Baba; Daniel R. Fuller; Jeppe Langeland Knudsen; Hjalte V. Kiefer; Amiram Hirshfeld; Noga Friedman; L. H. Andersen; Mordechai Sheves; David E. Clemmer; Yoni Toker

AbstractThe development of tandem ion mobility spectroscopy (IMS) known as IMS-IMS has led to extensive research into isomerizations of isolated molecules. Many recent works have focused on the retinal chromophore which is the optical switch used in animal vision. Here, we study a shortened derivative of the chromophore, which exhibits a rich IM spectrum allowing for a detailed analysis of its isomerization pathways, and show that the longer the chromophore is, the lower the barrier energies for isomerization are. Graphical Abstract


FEBS Letters | 2015

The role of retinal light induced dipole in halorhodopsin structural alteration

Sansa Dutta; Amiram Hirshfeld; Mordechai Sheves

The present work studies the mechanism of light induced protein conformational changes in the over‐expressed mutant of halorhodopsin (phR) from Natronomonas pharaonis. The catalytic effect of light is reflected in accelerating hydroxyl amine reaction rate of light adapted phR. Light catalysis was detected in native phR but also in artificial pigments derived from tailored retinal analogs locked at the crucial C13=C14 double bond. It is proposed that the photoexcited retinal chromophore induces protein concerted motion that decreases the energy gap between reactants ground and transition states. This energy gap is overcome by coupling to specific protein vibrations. Surprisingly, the rate constants show unusual decreasing trend following temperature increase both for native and artificial pigments.


Journal of Molecular Biology | 2006

Location of Trp265 in Metarhodopsin II: Implications for the Activation Mechanism of the Visual Receptor Rhodopsin

Evan Crocker; Markus Eilers; Shivani Ahuja; Viktor Hornak; Amiram Hirshfeld; Mordechai Sheves; Steven O. Smith

Collaboration


Dive into the Amiram Hirshfeld's collaboration.

Top Co-Authors

Avatar

Mordechai Sheves

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan M. Dilger

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge