Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amnon Amir is active.

Publication


Featured researches published by Amnon Amir.


Nature Medicine | 2016

Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer

Maria Gloria Dominguez-Bello; Kassandra M. De Jesús-Laboy; Nan Shen; Laura M. Cox; Amnon Amir; Antonio Gonzalez; Nicholas A. Bokulich; Se Jin Song; Marina Hoashi; Juana I. Rivera-Vinas; Keimari Mendez; Rob Knight; Jose C. Clemente

Exposure of newborns to the maternal vaginal microbiota is interrupted with cesarean birthing. Babies delivered by cesarean section (C-section) acquire a microbiota that differs from that of vaginally delivered infants, and C-section delivery has been associated with increased risk for immune and metabolic disorders. Here we conducted a pilot study in which infants delivered by C-section were exposed to maternal vaginal fluids at birth. Similarly to vaginally delivered babies, the gut, oral and skin bacterial communities of these newborns during the first 30 d of life was enriched in vaginal bacteria—which were underrepresented in unexposed C-section–delivered infants—and the microbiome similarity to those of vaginally delivered infants was greater in oral and skin samples than in anal samples. Although the long-term health consequences of restoring the microbiota of C-section–delivered infants remain unclear, our results demonstrate that vaginal microbes can be partially restored at birth in C-section–delivered babies.


Science | 2016

Microbial community assembly and metabolic function during mammalian corpse decomposition

Jessica L. Metcalf; Zhenjiang Zech Xu; Sophie Weiss; Simon Lax; Will Van Treuren; Embriette R. Hyde; Se Jin Song; Amnon Amir; Peter E. Larsen; Naseer Sangwan; Daniel Haarmann; Greg Humphrey; Gail Ackermann; Luke R. Thompson; Christian L. Lauber; Alexander Bibat; Catherine Nicholas; Matthew J. Gebert; Joseph F. Petrosino; Sasha C. Reed; Jack A. Gilbert; Aaron M. Lynne; Sibyl R. Bucheli; David O. Carter; Rob Knight

Decomposition spawns a microbial zoo The death of a large animal represents a food bonanza for microorganisms. Metcalf et al. monitored microbial activity during the decomposition of mouse and human cadavers. Regardless of soil type, season, or species, the microbial succession during decomposition was a predictable measure of time since death. An overlying corpse leaches nutrients that allow soil- and insect-associated fungi and bacteria to grow. These microorganisms are metabolic specialists that convert proteins and lipids into foul-smelling compounds such as cadaverine, putrescine, and ammonia, whose signature may persist in the soil long after a corpse has been removed. Science, this issue p. 158 As a corpse rots, the microbial succession follows a similar pattern across different types of soil. Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.


mSystems | 2017

Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns

Amnon Amir; Daniel McDonald; Jose A. Navas-Molina; Evguenia Kopylova; James T. Morton; Zhenjiang Zech Xu; Eric P. Kightley; Luke R. Thompson; Embriette R. Hyde; Antonio González; Rob Knight

Deblur provides a rapid and sensitive means to assess ecological patterns driven by differentiation of closely related taxa. This algorithm provides a solution to the problem of identifying real ecological differences between taxa whose amplicons differ by a single base pair, is applicable in an automated fashion to large-scale sequencing data sets, and can integrate sequencing runs collected over time. ABSTRACT High-throughput sequencing of 16S ribosomal RNA gene amplicons has facilitated understanding of complex microbial communities, but the inherent noise in PCR and DNA sequencing limits differentiation of closely related bacteria. Although many scientific questions can be addressed with broad taxonomic profiles, clinical, food safety, and some ecological applications require higher specificity. Here we introduce a novel sub-operational-taxonomic-unit (sOTU) approach, Deblur, that uses error profiles to obtain putative error-free sequences from Illumina MiSeq and HiSeq sequencing platforms. Deblur substantially reduces computational demands relative to similar sOTU methods and does so with similar or better sensitivity and specificity. Using simulations, mock mixtures, and real data sets, we detected closely related bacterial sequences with single nucleotide differences while removing false positives and maintaining stability in detection, suggesting that Deblur is limited only by read length and diversity within the amplicon sequences. Because Deblur operates on a per-sample level, it scales to modern data sets and meta-analyses. To highlight Deblur’s ability to integrate data sets, we include an interactive exploration of its application to multiple distinct sequencing rounds of the American Gut Project. Deblur is open source under the Berkeley Software Distribution (BSD) license, easily installable, and downloadable from https://github.com/biocore/deblur . IMPORTANCE Deblur provides a rapid and sensitive means to assess ecological patterns driven by differentiation of closely related taxa. This algorithm provides a solution to the problem of identifying real ecological differences between taxa whose amplicons differ by a single base pair, is applicable in an automated fashion to large-scale sequencing data sets, and can integrate sequencing runs collected over time.


mSystems | 2016

Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies

Se Jin Song; Amnon Amir; Jessica L. Metcalf; Katherine R. Amato; Zhenjiang Zech Xu; Greg Humphrey; Rob Knight

Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive. ABSTRACT Immediate freezing at −20°C or below has been considered the gold standard for microbiome preservation, yet this approach is not feasible for many field studies, ranging from anthropology to wildlife conservation. Here we tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including such types of variation as freeze-thaw cycles and the high temperature fluctuations often encountered under field conditions. We found that three of the methods—95% ethanol, FTA cards, and the OMNIgene Gut kit—can preserve samples sufficiently well at ambient temperatures such that differences at 8 weeks are comparable to differences among technical replicates. However, even the worst methods, including those with no fixative, were able to reveal microbiome differences between species at 8 weeks and between individuals after a week, allowing meta-analyses of samples collected using various methods when the effect of interest is expected to be larger than interindividual variation (although use of a single method within a study is strongly recommended to reduce batch effects). Encouragingly for FTA cards, the differences caused by this method are systematic and can be detrended. As in other studies, we strongly caution against the use of 70% ethanol. The results, spanning 15 individuals and over 1,200 samples, provide our most comprehensive view to date of storage effects on stool and provide a paradigm for the future studies of other sample types that will be required to provide a global view of microbial diversity and its interaction among humans, animals, and the environment. IMPORTANCE Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive.


Cell Host & Microbe | 2015

Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota.

Fei Teng; Fang Yang; Shi Huang; Cunpei Bo; Zhenjiang Zech Xu; Amnon Amir; Rob Knight; Junqi Ling; Jian Xu

Microbiota-based prediction of chronic infections is promising yet not well established. Early childhood caries (ECC) is the most common infection in children. Here we simultaneously tracked microbiota development at plaque and saliva in 50 4-year-old preschoolers for 2 years; children either stayed healthy, transitioned into cariogenesis, or experienced caries exacerbation. Caries onset delayed microbiota development, which is otherwise correlated with aging in healthy children. Both plaque and saliva microbiota are more correlated with changes in ECC severity (dmfs) during onset than progression. By distinguishing between aging- and disease-associated taxa and exploiting the distinct microbiota dynamics between onset and progression, we developed a model, Microbial Indicators of Caries, to diagnose ECC from healthy samples with 70% accuracy and predict, with 81% accuracy, future ECC onsets for samples clinically perceived as healthy. Thus, caries onset in apparently healthy teeth can be predicted using microbiota, when appropriately de-trended for age.


Nucleic Acids Research | 2010

Identification of rare alleles and their carriers using compressed se(que)nsing

Noam Shental; Amnon Amir; Or Zuk

Identification of rare variants by resequencing is important both for detecting novel variations and for screening individuals for known disease alleles. New technologies enable low-cost resequencing of target regions, although it is still prohibitive to test more than a few individuals. We propose a novel pooling design that enables the recovery of novel or known rare alleles and their carriers in groups of individuals. The method is based on a Compressed Sensing (CS) approach, which is general, simple and efficient. CS allows the use of generic algorithmic tools for simultaneous identification of multiple variants and their carriers. We model the experimental procedure and show via computer simulations that it enables the recovery of rare alleles and their carriers in larger groups than were possible before. Our approach can also be combined with barcoding techniques to provide a feasible solution based on current resequencing costs. For example, when targeting a small enough genomic region (∼100 bp) and using only ∼10 sequencing lanes and ∼10 distinct barcodes per lane, one recovers the identity of 4 rare allele carriers out of a population of over 4000 individuals. We demonstrate the performance of our approach over several publicly available experimental data sets.


Cancer Epidemiology, Biomarkers & Prevention | 2016

Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies

Rashmi Sinha; Jun Chen; Amnon Amir; Emily Vogtmann; Jianxin Shi; Kristin S. Inman; Roberto Flores; Joshua N. Sampson; Rob Knight; Nicholas Chia

Background: The need to develop valid methods for sampling and analyzing fecal specimens for microbiome studies is increasingly important, especially for large population studies. Methods: Some of the most important attributes of any sampling method are reproducibility, stability, and accuracy. We compared seven fecal sampling methods [no additive, RNAlater, 70% ethanol, EDTA, dry swab, and pre/post development fecal occult blood test (FOBT)] using 16S rRNA microbiome profiling in two laboratories. We evaluated nine commonly used microbiome metrics: abundance of three phyla, two alpha-diversities, and four beta-diversities. We determined the technical reproducibility, stability at ambient temperature, and accuracy. Results: Although microbiome profiles showed systematic biases according to sample method and time at ambient temperature, the highest source of variation was between individuals. All collection methods showed high reproducibility. FOBT and RNAlater resulted in the highest stability without freezing for 4 days. In comparison with no-additive samples, swab, FOBT, and 70% ethanol exhibited the greatest accuracy when immediately frozen. Conclusions: Overall, optimal stability and reproducibility were achieved using FOBT, making this a reasonable sample collection method for 16S analysis. Impact: Having standardized method of collecting and storing stable fecal samples will allow future investigations into the role of gut microbiota in chronic disease etiology in large population studies. Cancer Epidemiol Biomarkers Prev; 25(2); 407–16. ©2015 AACR.


Genome Biology | 2014

Tracking down the sources of experimental contamination in microbiome studies.

Sophie Weiss; Amnon Amir; Embriette R. Hyde; Jessica L. Metcalf; Se Jin Song; Rob Knight

A recent report warns that DNA extraction kits and other laboratory reagents are considerable sources of contamination in microbiome experiments. The issue of contamination is particularly problematic for samples of low biomass.See related research, http://www.biomedcentral.com/1741-7007/12/87


Molecular Systems Biology | 2007

Noise in timing and precision of gene activities in a genetic cascade.

Amnon Amir; Oren Kobiler; Assaf Rokney; Amos B. Oppenheim; Joel Stavans

Biological developmental pathways require proper timing of gene expression. We investigated timing variations of defined steps along the lytic cascade of bacteriophage λ. Gene expression was followed in individual lysogenic cells, after induction with a pulse of UV irradiation. At low UV doses, some cells undergo partial induction and eventually divide, whereas others follow the lytic pathway. The timing of events in cells committed to lysis is independent of the level of activation of the SOS response, suggesting that the lambda network proceeds autonomously after induction. An increased loss of temporal coherence of specific events from prophage induction to lysis is observed, even though the coefficient of variation of timing fluctuations decreases. The observed temporal variations are not due to cell factors uniformly dilating the timing of execution of the cascade. This behavior is reproduced by a simple model composed of independent stages, which for a given mean duration predicts higher temporal precision, when a cascade consists of a large number of steps. Evidence for the independence of regulatory modules in the network is presented.


Molecular Microbiology | 2008

Host responses influence on the induction of lambda prophage

Assaf Rokney; Oren Kobiler; Amnon Amir; Donald L. Court; Joel Stavans; Sankar Adhya; Amos B. Oppenheim

Inactivation of bacteriophage lambda CI repressor leads almost exclusively to lytic development. Prophage induction can be initiated either by DNA damage or by heat treatment of a temperature‐sensitive repressor. These two treatments also cause a concurrent activation of either the host SOS or heat‐shock stress responses respectively. We studied the effects of these two methods of induction on the lytic pathway by monitoring the activation of different lambda promoters, and found that the lambda genetic network co‐ordinates information from the host stress response networks. Our results show that the function of the CII transcriptional activator, which facilitates the lysogenic developmental pathway, is not observed following either method of induction. Mutations in the cro gene restore the CII function irrespective of the induction method. Deletion of the heat‐shock protease gene ftsH can also restore CII function following heat induction but not following SOS induction. Our findings highlight the importance of the elimination of CII function during induction as a way to ensure an efficient lytic outcome. We also show that, despite the common inhibitory effect on CII function, there are significant differences in the heat‐ and SOS‐induced pathways leading to the lytic cascade.

Collaboration


Dive into the Amnon Amir's collaboration.

Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar

Or Zuk

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Noam Shental

Open University of Israel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily Vogtmann

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Rashmi Sinha

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Se Jin Song

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge