Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Se Jin Song is active.

Publication


Featured researches published by Se Jin Song.


Cell Host & Microbe | 2014

The Treatment-Naive Microbiome in New-Onset Crohn’s Disease

Dirk Gevers; Subra Kugathasan; Lee A. Denson; Yoshiki Vázquez-Baeza; Will Van Treuren; Boyu Ren; Emma Schwager; Dan Knights; Se Jin Song; Moran Yassour; Xochitl C. Morgan; Aleksandar D. Kostic; Chengwei Luo; Antonio Gonzalez; Daniel McDonald; Yael Haberman; Thomas D. Walters; Susan S. Baker; Joel R. Rosh; Michael Stephens; Melvin B. Heyman; James Markowitz; Robert N. Baldassano; Anne M. Griffiths; Francisco A. Sylvester; David R. Mack; Sandra C. Kim; Wallace Crandall; Jeffrey S. Hyams; Curtis Huttenhower

Inflammatory bowel diseases (IBDs), including Crohns disease (CD), are genetically linked to host pathways that implicate an underlying role for aberrant immune responses to intestinal microbiota. However, patterns of gut microbiome dysbiosis in IBD patients are inconsistent among published studies. Using samples from multiple gastrointestinal locations collected prior to treatment in new-onset cases, we studied the microbiome in the largest pediatric CD cohort to date. An axis defined by an increased abundance in bacteria which includexa0Enterobacteriaceae, Pasteurellacaea, Veillonellaceae, and Fusobacteriaceae, and decreased abundance in Erysipelotrichales, Bacteroidales, and Clostridiales, correlates strongly with disease status. Microbiome comparison between CD patients with and without antibiotic exposure indicates that antibiotic use amplifies the microbial dysbiosis associated with CD. Comparing the microbial signatures between the ileum, the rectum, and fecal samples indicates that at this early stage of disease, assessing the rectal mucosal-associated microbiome offers unique potential for convenient and early diagnosis of CD.


eLife | 2013

Cohabiting family members share microbiota with one another and with their dogs.

Se Jin Song; Christian L. Lauber; Elizabeth K. Costello; Catherine A. Lozupone; Gregory Humphrey; Donna Berg-Lyons; J. Gregory Caporaso; Dan Knights; Jose C. Clemente; Sara Nakielny; Jeffrey I. Gordon; Noah Fierer; Rob Knight

Human-associated microbial communities vary across individuals: possible contributing factors include (genetic) relatedness, diet, and age. However, our surroundings, including individuals with whom we interact, also likely shape our microbial communities. To quantify this microbial exchange, we surveyed fecal, oral, and skin microbiota from 60 families (spousal units with children, dogs, both, or neither). Household members, particularly couples, shared more of their microbiota than individuals from different households, with stronger effects of co-habitation on skin than oral or fecal microbiota. Dog ownership significantly increased the shared skin microbiota in cohabiting adults, and dog-owning adults shared more ‘skin’ microbiota with their own dogs than with other dogs. Although the degree to which these shared microbes have a true niche on the human body, vs transient detection after direct contact, is unknown, these results suggest that direct and frequent contact with our cohabitants may significantly shape the composition of our microbial communities. DOI: http://dx.doi.org/10.7554/eLife.00458.001


Nature Medicine | 2016

Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer

Maria Gloria Dominguez-Bello; Kassandra M. De Jesús-Laboy; Nan Shen; Laura M. Cox; Amnon Amir; Antonio Gonzalez; Nicholas A. Bokulich; Se Jin Song; Marina Hoashi; Juana I. Rivera-Vinas; Keimari Mendez; Rob Knight; Jose C. Clemente

Exposure of newborns to the maternal vaginal microbiota is interrupted with cesarean birthing. Babies delivered by cesarean section (C-section) acquire a microbiota that differs from that of vaginally delivered infants, and C-section delivery has been associated with increased risk for immune and metabolic disorders. Here we conducted a pilot study in which infants delivered by C-section were exposed to maternal vaginal fluids at birth. Similarly to vaginally delivered babies, the gut, oral and skin bacterial communities of these newborns during the first 30 d of life was enriched in vaginal bacteria—which were underrepresented in unexposed C-section–delivered infants—and the microbiome similarity to those of vaginally delivered infants was greater in oral and skin samples than in anal samples. Although the long-term health consequences of restoring the microbiota of C-section–delivered infants remain unclear, our results demonstrate that vaginal microbes can be partially restored at birth in C-section–delivered babies.


Science Advances | 2015

The microbiome of uncontacted Amerindians

Jose C. Clemente; Erica C. Pehrsson; Martin J. Blaser; Kuldip Sandhu; Zhan Gao; Bin Wang; Magda Magris; Glida Hidalgo; Monica Contreras; Oscar Noya-Alarcón; Orlana Lander; Jeremy McDonald; Mike Cox; Jens Walter; Phaik Lyn Oh; Jean F. Ruiz; Selena Rodriguez; Nan Shen; Se Jin Song; Jessica L. Metcalf; Rob Knight; Gautam Dantas; M. Gloria Dominguez-Bello

Fecal, oral, and skin biomes of isolated Amerindians show higher human bacterial diversity including antibiotic resistance genes. Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body.


Methods in Enzymology | 2013

Advancing Our Understanding of the Human Microbiome Using QIIME

Jose A. Navas-Molina; Juan Manuel Peralta-Sánchez; Antonio Gonzalez; Paul J. McMurdie; Yoshiki Vázquez-Baeza; Zhenjiang Xu; Luke K. Ursell; Christian L. Lauber; Hong-Wei Zhou; Se Jin Song; James Huntley; Gail Ackermann; Donna Berg-Lyons; Susan Holmes; J. Gregory Caporaso; Rob Knight

High-throughput DNA sequencing technologies, coupled with advanced bioinformatics tools, have enabled rapid advances in microbial ecology and our understanding of the human microbiome. QIIME (Quantitative Insights Into Microbial Ecology) is an open-source bioinformatics software package designed for microbial community analysis based on DNA sequence data, which provides a single analysis framework for analysis of raw sequence data through publication-quality statistical analyses and interactive visualizations. In this chapter, we demonstrate the use of the QIIME pipeline to analyze microbial communities obtained from several sites on the bodies of transgenic and wild-type mice, as assessed using 16S rRNA gene sequences generated on the Illumina MiSeq platform. We present our recommended pipeline for performing microbial community analysis and provide guidelines for making critical choices in the process. We present examples of some of the types of analyses that are enabled by QIIME and discuss how other tools, such as phyloseq and R, can be applied to expand upon these analyses.


Frontiers in Ecology and the Environment | 2012

From superspreaders to disease hotspots: linking transmission across hosts and space

Sara H. Paull; Se Jin Song; Katherine M. McClure; Loren C. Sackett; A. Marm Kilpatrick; Pieter T. J. Johnson

Since the identification and imprisonment of “Typhoid Mary”, a woman who infected at least 47 people with typhoid in the early 1900s, epidemiologists have recognized that “superspreading” hosts play a key role in disease epidemics. Such variability in transmission also exists among species within a community and among habitat patches across a landscape, underscoring the need for an integrative framework for studying transmission heterogeneity, or the differences among hosts or locations in their contribution to pathogen spread. Here, we synthesize literature on human, plant, and animal diseases to evaluate the relative influence of host, pathogen, and environmental factors in producing highly infectious individuals, species, and landscapes. We show that host and spatial heterogeneity are closely linked and that quantitatively assessing the contribution of infectious individuals, species, or environmental patches to overall transmission can aid management strategies. We conclude by posing hypotheses regarding how pathogen natural history influences transmission variability and highlight emerging frontiers in this area of study.


Science | 2016

Microbial community assembly and metabolic function during mammalian corpse decomposition

Jessica L. Metcalf; Zhenjiang Zech Xu; Sophie Weiss; Simon Lax; Will Van Treuren; Embriette R. Hyde; Se Jin Song; Amnon Amir; Peter E. Larsen; Naseer Sangwan; Daniel Haarmann; Greg Humphrey; Gail Ackermann; Luke R. Thompson; Christian L. Lauber; Alexander Bibat; Catherine Nicholas; Matthew J. Gebert; Joseph F. Petrosino; Sasha C. Reed; Jack A. Gilbert; Aaron M. Lynne; Sibyl R. Bucheli; David O. Carter; Rob Knight

Decomposition spawns a microbial zoo The death of a large animal represents a food bonanza for microorganisms. Metcalf et al. monitored microbial activity during the decomposition of mouse and human cadavers. Regardless of soil type, season, or species, the microbial succession during decomposition was a predictable measure of time since death. An overlying corpse leaches nutrients that allow soil- and insect-associated fungi and bacteria to grow. These microorganisms are metabolic specialists that convert proteins and lipids into foul-smelling compounds such as cadaverine, putrescine, and ammonia, whose signature may persist in the soil long after a corpse has been removed. Science, this issue p. 158 As a corpse rots, the microbial succession follows a similar pattern across different types of soil. Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.


Molecular Ecology | 2014

Convergence of gut microbiomes in myrmecophagous mammals

Frédéric Delsuc; Jessica L. Metcalf; Laura Wegener Parfrey; Se Jin Song; Antonio Gonzalez; Rob Knight

Mammals have diversified into many dietary niches. Specialized myrmecophagous (ant‐ and termite‐eating) placental mammals represent a textbook example of evolutionary convergence driven by extreme diet specialization. Armadillos, anteaters, aardvarks, pangolins and aardwolves thus provide a model system for understanding the potential role of gut microbiota in the convergent adaptation to myrmecophagy. Here, we expand upon previous mammalian gut microbiome studies by using high‐throughput barcoded Illumina sequencing of the 16S rRNA gene to characterize the composition of gut microbiota in 15 species representing all placental myrmecophagous lineages and their close relatives from zoo‐ and field‐collected samples. We confirm that both diet and phylogeny drive the evolution of mammalian gut microbiota, with cases of convergence in global composition, but also examples of phylogenetic inertia. Our results reveal specialized placental myrmecophages as a spectacular case of large‐scale convergence in gut microbiome composition. Indeed, neighbour‐net networks and beta‐diversity plots based on UniFrac distances show significant clustering of myrmecophagous species (anteaters, aardvarks and aardwolves), even though they belong to phylogenetically distant lineages representing different orders. The aardwolf, which diverged from carnivorous hyenas only in the last 10 million years, experienced a convergent shift in the composition of its gut microbiome to become more similar to other myrmecophages. These results confirm diet adaptation to be a major driving factor of convergence in gut microbiome composition over evolutionary timescales. This study sets the scene for future metagenomic studies aiming at evaluating potential convergence in functional gene content in the microbiomes of specialized mammalian myrmecophages.


EMBO Reports | 2011

Our microbial selves: what ecology can teach us

Antonio Gonzalez; Jose C. Clemente; Ashley Shade; Jessica L. Metcalf; Se Jin Song; Bharath Prithiviraj; Brent E. Palmer; Rob Knight

Advances in DNA sequencing have allowed us to characterize microbial communities—including those associated with the human body—at a broader range of spatial and temporal scales than ever before. We can now answer fundamental questions that were previously inaccessible and use well‐tested ecological theories to gain insight into changes in the microbiome that are associated with normal development and human disease. Perhaps unsurprisingly, the ecosystems associated with our body follow trends identified in communities at other sites and scales, and thus studies of the microbiome benefit from ecological insight. Here, we assess human microbiome research in the context of ecological principles and models, focusing on diversity, biological drivers of community structure, spatial patterning and temporal dynamics, and suggest key directions for future research that will bring us closer to the goal of building predictive models for personalized medicine.


mSystems | 2016

Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies

Se Jin Song; Amnon Amir; Jessica L. Metcalf; Katherine R. Amato; Zhenjiang Zech Xu; Greg Humphrey; Rob Knight

Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive. ABSTRACT Immediate freezing at −20°C or below has been considered the gold standard for microbiome preservation, yet this approach is not feasible for many field studies, ranging from anthropology to wildlife conservation. Here we tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including such types of variation as freeze-thaw cycles and the high temperature fluctuations often encountered under field conditions. We found that three of the methods—95% ethanol, FTA cards, and the OMNIgene Gut kit—can preserve samples sufficiently well at ambient temperatures such that differences at 8 weeks are comparable to differences among technical replicates. However, even the worst methods, including those with no fixative, were able to reveal microbiome differences between species at 8 weeks and between individuals after a week, allowing meta-analyses of samples collected using various methods when the effect of interest is expected to be larger than interindividual variation (although use of a single method within a study is strongly recommended to reduce batch effects). Encouragingly for FTA cards, the differences caused by this method are systematic and can be detrended. As in other studies, we strongly caution against the use of 70% ethanol. The results, spanning 15 individuals and over 1,200 samples, provide our most comprehensive view to date of storage effects on stool and provide a paradigm for the future studies of other sample types that will be required to provide a global view of microbial diversity and its interaction among humans, animals, and the environment. IMPORTANCE Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive.

Collaboration


Dive into the Se Jin Song's collaboration.

Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amnon Amir

University of California

View shared research outputs
Top Co-Authors

Avatar

Antonio Gonzalez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gail Ackermann

University of California

View shared research outputs
Top Co-Authors

Avatar

Jon G. Sanders

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge