Amparo C. Martínez-Ramírez
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amparo C. Martínez-Ramírez.
Applied and Environmental Microbiology | 2006
Rose Gomes Monnerat; Érica Soares Martins; Paulo Roberto Queiroz; Sergio Orduz; Gabriela Jaramillo; Graciela B. Benintende; Jorge G. Cozzi; M. Dolores Real; Amparo C. Martínez-Ramírez; Carolina Rausell; Jairo Cerón; Jorge E. Ibarra; M. Cristina Del Rincón-Castro; Ana M. Espinoza; Luis Meza-Basso; Lizbeth Cabrera; Mario Soberón; Alejandra Bravo
ABSTRACT Bacillus thuringiensis strains isolated from Latin American soil samples that showed toxicity against three Spodoptera frugiperda populations from different geographical areas (Mexico, Colombia, and Brazil) were characterized on the basis of their insecticidal activity, crystal morphology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parasporal crystals, plasmid profiles, and cry gene content. We found that the different S. frugiperda populations display different susceptibilities to the selected B. thuringiensis strains and also to pure preparations of Cry1B, Cry1C, and Cry1D toxins. Binding assays performed with pure toxin demonstrated that the differences in the toxin binding capacities of these insect populations correlated with the observed differences in susceptibility to the three Cry toxins analyzed. Finally, the genetic variability of the three insect populations was analyzed by random amplification of polymorphic DNA-PCR, which showed significant genetic diversity among the three S. frugiperda populations analyzed. The data presented here show that the genetic variability of S. frugiperda populations should be carefully considered in the development of insect pest control strategies, including the deployment of genetically modified maize in different geographical regions.
Biocontrol Science and Technology | 1999
Amparo C. Martínez-Ramírez; Fred Gould; Juan Ferré
Two strains of the tobacco budworm Heliothis virescens, one selected in the laboratory for resistance to Cry1Ac crystal protein from Bacillus thuringiensis (for which the mechanism of resistance was not associated with reduced binding) and an unselected control strain, were exposed to sublethal doses of pure Cry1A crystal proteins. A histopathological study was conducted to determine the epithelial damage caused by ingestion of Cry1Ac. Tissue sections of the midgut were obtained after 20, 40 and 60 min of toxin ingestion. Histopathological changes were observed primarily in columnar cells and were time-dependent. However, essentially the same level of damage was observed in the two strains. Toxin feeding tests with Cry1Ac and Cry1Ab, indicated that the toxins retarded growth and inhibited food intake of susceptible larvae, but did not significantly affect larvae of the resistant strain. Since the histopathological damage was similar in both strains, it appears that resistant larvae could repair (or substi...
Insect Biochemistry and Molecular Biology | 2001
Inmaculada García-Robles; Axel Gruppe; Amparo C. Martínez-Ramírez; Carolina Rausell; María Dolores Real; Alejandra Bravo
The mode of action of Cry toxins has been described principally in lepidopteran insects as a multistep process. In this work we describe the mode of action of a Cry toxin active in the common pine sawfly Diprion pini (Hymenoptera, Diprionidae), considered a major forest pest in Europe. Strain PS86Q3 contains a long bipyramidal crystal composed of five major proteins. The N-terminal sequence shows that the 155 kDa protein corresponds to Cry5B toxin and the other proteins belong to the Cry5A subgroup. PCR analysis indicates the presence of cry5Ac and cry5Ba genes, suggesting that Cry5A protein should be Cry5Ac. Activation of protoxins with trypsin or with midgut content from D. pini and Cephacia abietis (Hymenoptera, Pamphiliidae) (spruce webspinning sawfly), another important hymenopteran forest pest, produced a single 75 kDa toxin that corresponded to Cry5A by N-terminal sequence and is responsible for the insecticidal activity. Homologous competition experiments with D. pini and C. abietis brush border membrane vesicles (BBMV) showed that the binding interaction of Cry5A is specific. Membrane potential measurements using a fluorescent dye indicate that Cry5A toxin at nM concentration caused immediate permeability changes in the BBMV isolated from both hymenopteran larvae. The initial response and the sustained permeability change are cationic as previously shown for Cry1 toxins. These results indicate that the hymenopteran specific Cry5A toxin exerts toxicity by a similar mechanism as Cry1 toxins.
Applied and Environmental Microbiology | 2000
Carolina Rausell; Amparo C. Martínez-Ramírez; Inmaculada García-Robles; María Dolores Real
ABSTRACT The insecticidal activity and receptor binding properties ofBacillus thuringiensis Cry1A toxins towards the forest pests Thaumetopoea pityocampa (processionary moth) andLymantria monacha (nun moth) were investigated. Cry1Aa, Cry1Ab, and Cry1Ac were highly toxic (corresponding 50% lethal concentration values: 956, 895, and 379 pg/μl, respectively) to first-instar T. pityocampa larvae. During larval development, Cry1Ab and Cry1Ac toxicity decreased with increasing age, although the loss of activity was more pronounced for Cry1Ab. Binding assays with 125I-labelled Cry1Ab and brush border membrane vesicles from T. pityocampa first- and last-instar larvae detected a remarkable decrease in the overall Cry1Ab binding affinity in last-instar larvae, although saturable Cry1Ab binding to both instars was observed. Homologous competition experiments demonstrated the loss of one of the two Cry1Ab high-affinity binding sites detected in first-instar larvae. Growth inhibition assays with sublethal doses of Cry1Aa, Cry1Ab, and Cry1Ac in L. monacha showed that all three toxins were able to delay molting from second instar to third instar. Specific saturable binding of Cry1Ab was detected only in first- and second-instar larvae. Cry1Ab binding was not detected in last-instar larvae, although specific binding of Cry1Aa and Cry1Ac was observed. These results demonstrate a loss of Cry1Ab binding sites during development on the midgut epithelium of T. pityocampa and L. monacha, correlating in T. pityocampa with a decrease in Cry1Ab toxicity with increasing age.
Insect Biochemistry and Molecular Biology | 1992
Amparo C. Martínez-Ramírez; Juan Ferré; Francisco J. Silva
Abstract DOPA and dopamine have been analyzed in the fruitfly Drosophila melanogaster by high-performance liquid chromatography with electrochemical detection without prepurification of the sample. These catecholamines were determined throughout development from egg to adult. DOPA levels increased to maximal titres in third instar larvae and decreased just before pupariation, remaining almost constant from the fifth day on. Dopamine levels showed four peaks coinciding with the two molts, pupariation and adult emergence. The quantitative data reported here are consistent with the studies on the developmental expression of enzymes involved in catecholamine metabolism.
Applied and Environmental Microbiology | 2007
Jesko Oestergaard; Ralf-Udo Ehlers; Amparo C. Martínez-Ramírez; María Dolores Real
ABSTRACT Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.
Insect Biochemistry and Molecular Biology | 1994
Ana C. Piedrafita; Amparo C. Martínez-Ramírez; Francisco J. Silva
Around 50 min after adult ecdysis, a significant increase in DOPA content is observed in Drosophila melanogaster. This increase, which is followed by increases of other catecholamine sclerotizing precursors, parallels the visually observable pigmentation and hardening of the adult cuticle. Since this DOPA concentration developmental profile is correlated with cuticle formation, we have analyzed the involvement of aromatic amino acid hydroxylases in this process by determining the same profile in mutant strains affecting these hydroxylations, either directly (defects in the genes coding for these hydroxylases), or indirectly (defects in genes involved in the biosynthesis of the essential pterin cofactor, tetrahydrobiopterin). The altered profiles of the pterin biosynthesis defective strains Pu2/SM1 and cn prc4/cn prm2b showed that some pterin is required for these metabolic changes. Meanwhile the altered profiles of the Hnr3 and ple/TM3 strains directly implicate the phenylalanine and tyrosine hydroxylase enzymes. An analysis of the phenylalanine hydroxylase protein presence during the period of the first 3 h post adult ecdysis in thorax plus abdomen extracts has shown that although the protein is present during the complete developmental period, no changes in the cross reacting material amounts are observed.
Pesticide Biochemistry and Physiology | 2013
Camila Ochoa-Campuzano; Amparo C. Martínez-Ramírez; Estefanía Contreras; Carolina Rausell; M. Dolores Real
Bacillus thuringienesis (Bt) Cry toxins constitute the most extensively used environmentally safe biopesticide and their mode of action relies on the interaction of the toxins with membrane proteins in the midgut of susceptible insects that mediate toxicity and insect specificity. Therefore, identification of Bt Cry toxin interacting proteins in the midgut of target insects and understanding their role in toxicity is of great interest to exploit their insecticidal action. Using ligand blot, we demonstrated that Bt Cry3Aa toxin bound to a 30kDa protein in Colorado potato beetle (CPB) larval midgut membrane, identified by sequence homology as prohibitin-1 protein. Prohibitins comprise a highly conserved family of proteins implicated in important cellular processes. We obtained the complete CPB prohibitin-1 DNA coding sequence of 828pb, in silico translated into a 276-amino acid protein. The analysis at the amino acid level showed that the protein contains a prohibitin-homology domain (Band7_prohibitin, cd03401) conserved among prohibitin proteins. A striking feature of the CPB identified prohibitin-1 is the predicted presence of cadherin elements, potential binding sites for Cry toxins described in other Bt susceptible insects. We also showed that CPB prohibitin-1 protein partitioned into both, detergent soluble and insoluble membrane fractions, as well as a prohibitin-2 homologous protein, previously reported to form functional complexes with prohibitin-1 in other organisms. Prohibitin complexes act as membrane scaffolds ensuring the recruitment of membrane proteases to facilitate substrate processing. Accordingly, sequestration of prohibitin-1 by an anti-prohibitin-1 antibody impaired the Cry3Aa toxin inhibition of the proteolytic cleavage of a fluorogenic synthetic substrate of an ADAM-like metalloprotease previously reported to proteolize this toxin. In this work, we also demonstrated that prohibitin-1 RNAi silencing in CPB larvae produced deleterious effects and together with a LD50 Cry3Aa toxin treatment resulted in a highly efficient short term response since 100% larval mortality was achieved just 5days after toxin challenge. Therefore, the combination of prohibitin RNAi and Cry toxin reveals as an effective strategy to improve crop protection.
International Journal of Molecular Sciences | 2013
Inmaculada García-Robles; Camila Ochoa-Campuzano; Emma Fernández-Crespo; Gemma Camañes; Amparo C. Martínez-Ramírez; Carmen González-Bosch; Pilar García-Agustín; Carolina Rausell; María Dolores Real
Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction.
Insect Molecular Biology | 2017
Victor M. Ruiz-Arroyo; Inmaculada García-Robles; Camila Ochoa-Campuzano; G. A. Goig; Ekaterina Zaitseva; G. Baaken; Amparo C. Martínez-Ramírez; Carolina Rausell; María Dolores Real
Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore‐forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB‐ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB‐ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa toxicity was significantly lower in CPB‐ADAM10 silenced larvae and in vitro toxin pore‐forming ability was greatly diminished in lipid planar bilayers fused with CPB brush border membrane vesicles (BBMVs) prepared from CPB‐ADAM10 silenced larvae. In accordance with our previous data that indicated this toxin was a substrate of ADAM10 in CPB, Cry3Aa toxin membrane‐associated proteolysis was altered when CPB BBMVs lacked ADAM10. The functional validation of CPB‐ADAM10 as a Cry3Aa toxin receptor in CPB expands the already recognized role of ADAM10 as a pathogenicity determinant of pore‐forming toxins in humans to an invertebrate species.