M. Dolores Real
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Dolores Real.
Applied and Environmental Microbiology | 2006
Rose Gomes Monnerat; Érica Soares Martins; Paulo Roberto Queiroz; Sergio Orduz; Gabriela Jaramillo; Graciela B. Benintende; Jorge G. Cozzi; M. Dolores Real; Amparo C. Martínez-Ramírez; Carolina Rausell; Jairo Cerón; Jorge E. Ibarra; M. Cristina Del Rincón-Castro; Ana M. Espinoza; Luis Meza-Basso; Lizbeth Cabrera; Mario Soberón; Alejandra Bravo
ABSTRACT Bacillus thuringiensis strains isolated from Latin American soil samples that showed toxicity against three Spodoptera frugiperda populations from different geographical areas (Mexico, Colombia, and Brazil) were characterized on the basis of their insecticidal activity, crystal morphology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parasporal crystals, plasmid profiles, and cry gene content. We found that the different S. frugiperda populations display different susceptibilities to the selected B. thuringiensis strains and also to pure preparations of Cry1B, Cry1C, and Cry1D toxins. Binding assays performed with pure toxin demonstrated that the differences in the toxin binding capacities of these insect populations correlated with the observed differences in susceptibility to the three Cry toxins analyzed. Finally, the genetic variability of the three insect populations was analyzed by random amplification of polymorphic DNA-PCR, which showed significant genetic diversity among the three S. frugiperda populations analyzed. The data presented here show that the genetic variability of S. frugiperda populations should be carefully considered in the development of insect pest control strategies, including the deployment of genetically modified maize in different geographical regions.
Biochemical Genetics | 1986
Juan Ferré; Francisco J. Silva; M. Dolores Real; José L. Ménsua
Eye-color mutants of Drosophila melanogaster have been analyzed for their pigment content and related metabolites. Xanthommatin and dihydroxanthommatin (pigments causing brown eye color) were measured after selective extraction in acidified butanol. Pteridines (pigments causing red eye color) were quantitated after separation of 28 spots by thin-layer chromatography, most of which are pteridines and a few of which are fluorescent metabolites from the xanthommatin pathway. Pigment patterns have been studied in 45 loci. The pteridine pathway ramifies into two double branches giving rise to isoxanthopterin, “drosopterins,” and biopterin as final products. The regulatory relationship among the branches and the metabolic blockage of the mutants are discussed. The Hn locus is proposed to regulate pteridine synthesis in a step between pyruvoyltetrahydropterin and dihydropterin. The results also indicate that the synthesis and accumulation of xanthommatin in the eyes might be related to the synthesis of pteridines.
PLOS ONE | 2013
Estefanía Contreras; Carolina Rausell; M. Dolores Real
Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC50 values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18) and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II). Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge on how insects respond to Bt intoxication will allow designing more effective management strategies for pest control.
Journal of Invertebrate Pathology | 2013
Estefanía Contreras; Carolina Rausell; M. Dolores Real
In this study, a 2.1-fold Apolipophorin-III mRNA up-regulation was found in Tribolium castaneum larvae challenged with Bacillus thuringiensis Cry3Ba spore-crystal mixture. Knockdown of Apolipophorin-III by RNAi resulted in increased T. castaneum larvae susceptibility following Cry3Ba spore-crystal treatment, demonstrating Apolipophorin-III involvement in insect defense against B. thuringiensis. We showed that Apolipophorin-III participates in T. castaneum immune response to B. thuringiensis activating the prophenoloxidase cascade since: (i) phenoloxidase activity significantly increased after Cry3Ba spore-crystal treatment compared to untreated or Cry1Ac spore-crystal treated larvae and (ii) phenoloxidase activity in Cry3Ba spore-crystal treated Apolipophorin-III silenced larvae was 71±14% lower than that of non-silenced intoxicated larvae.
Journal of Biological Chemistry | 2013
Estefanía Contreras; Michael Schoppmeier; M. Dolores Real; Carolina Rausell
Background: Interaction with insect midgut receptors is required for Bacillus thuringienesis (Bt) toxicity. Results: RNAi knockdown of E-cadherin and sodium solute symporter (SSS) genes dramatically decreases Tribolium castaneum (Tc) larval susceptibility to Cry3Ba. A SSS fragment enhances Cry3Ba toxicity. Conclusion: E-cadherin and SSS but not aminopeptidase N are Cry3Ba receptors in Tc. Significance: For the first time, SSS was demonstrated as a Bt functional receptor. Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders.
Archives of Insect Biochemistry and Physiology | 1997
Carolina Rausell; Julia Llorca; M. Dolores Real
Variation of UDP-glucosyltransferase activity, during Drosophila melanogaster development, was analyzed. The endogenous metabolite xanthurenic acid and the xenobiotic compounds 1-naphthol and 2-naphthol were used as substrates. Developmentally regulated differences were observed for the three substrates, suggesting the presence of UDP-glucosyltransferase isoenzymes. This was further confirmed by FPLC chromatofocusing on a Mono P column: seven peaks of UDP-glucosyltransferase activity (pHs: > or = 6.3, 5.8, 5.5, 4.9, 4.5, 4.2, < or = 4.0) with either single or overlapping substrate specificity were detected. A single xanthurenic acid:UDP-glucosyltransferase activity (pl 5.8) was found throughout development. In contrast, a gradual increase in the number of 2-napthol:UDP-glucosyltransferase-isoenzymes (pl from 6.3 to 4.0) was observed during development, whereas no isoenzymes specific for 1-naphthol were resolved. Based on the distribution and substrate specificity of the eluted peaks in the three developmental stages analyzed, the presence of seven or possibly eight UDP-glucosyltransferase isoenzymes is proposed.
Developmental and Comparative Immunology | 2015
Estefanía Contreras; María Benito-Jardón; M. José López-Galiano; M. Dolores Real; Carolina Rausell
In Tribolium castaneum larvae we have demonstrated by RNA interference knockdown that the Bacillus thuringiensis Cry3Ba toxin receptors Cadherin-like and Sodium solute symporter proteins are also functional receptors of the less active Cry3Aa toxin. Differences in susceptibility to B. thuringiensis infection might not only rely on toxin-receptor interaction but also on host defense mechanisms. We compared the expression of the immune related genes encoding Apolipophorin-III and two antimicrobial peptides, Defensin3 and Defensin2 after B. thuringiensis challenge. All three genes were up-regulated following Cry3Ba spore-crystal intoxication whereas only Defensins gene expression was induced upon Cry3Aa spore-crystal treatment, evidencing a possible association between host immune response and larval susceptibility to B. thuringiensis. We assessed the antimicrobial activity spectra of T. castaneum defensins peptide fragments and found that a peptide fragment of Defensin3 was effective against the human microbial pathogens, Escherichia coli, Staphylococcus aureus and Candida albicans, being S. aureus the most susceptible one.
Pesticide Biochemistry and Physiology | 2013
Camila Ochoa-Campuzano; Amparo C. Martínez-Ramírez; Estefanía Contreras; Carolina Rausell; M. Dolores Real
Bacillus thuringienesis (Bt) Cry toxins constitute the most extensively used environmentally safe biopesticide and their mode of action relies on the interaction of the toxins with membrane proteins in the midgut of susceptible insects that mediate toxicity and insect specificity. Therefore, identification of Bt Cry toxin interacting proteins in the midgut of target insects and understanding their role in toxicity is of great interest to exploit their insecticidal action. Using ligand blot, we demonstrated that Bt Cry3Aa toxin bound to a 30kDa protein in Colorado potato beetle (CPB) larval midgut membrane, identified by sequence homology as prohibitin-1 protein. Prohibitins comprise a highly conserved family of proteins implicated in important cellular processes. We obtained the complete CPB prohibitin-1 DNA coding sequence of 828pb, in silico translated into a 276-amino acid protein. The analysis at the amino acid level showed that the protein contains a prohibitin-homology domain (Band7_prohibitin, cd03401) conserved among prohibitin proteins. A striking feature of the CPB identified prohibitin-1 is the predicted presence of cadherin elements, potential binding sites for Cry toxins described in other Bt susceptible insects. We also showed that CPB prohibitin-1 protein partitioned into both, detergent soluble and insoluble membrane fractions, as well as a prohibitin-2 homologous protein, previously reported to form functional complexes with prohibitin-1 in other organisms. Prohibitin complexes act as membrane scaffolds ensuring the recruitment of membrane proteases to facilitate substrate processing. Accordingly, sequestration of prohibitin-1 by an anti-prohibitin-1 antibody impaired the Cry3Aa toxin inhibition of the proteolytic cleavage of a fluorogenic synthetic substrate of an ADAM-like metalloprotease previously reported to proteolize this toxin. In this work, we also demonstrated that prohibitin-1 RNAi silencing in CPB larvae produced deleterious effects and together with a LD50 Cry3Aa toxin treatment resulted in a highly efficient short term response since 100% larval mortality was achieved just 5days after toxin challenge. Therefore, the combination of prohibitin RNAi and Cry toxin reveals as an effective strategy to improve crop protection.
Insect Biochemistry | 1991
M. Dolores Real; Juan Ferré
Abstract A sensitive assay for kynurenine transaminase activity (E.C. 2.6.1.7) based on rapid separation of the reaction product by high performance liquid chromatography (HPLC) has been developed. Drosophila sordidula extracts have been assayed by this new method and this is the first time that kynurenine transaminase activity has been demonstrated in Drosophila . The method of assay developed can be extended to any other organism. Kynurenine and 3-hydroxykynurenine were both used as substrates, and they were transaminated to kynurenic acid and xanthruenic acid, respectively. HPLC is used to separate and quantitate these reaction products from all other components in the reaction mixture. In crude extracts from Drosophila , the reaction requires pyridoxal 5′-phosphate and an amino acid acceptor. The enzyme activity showed a maximum at 47°C and pH 8.0 with kynurenine and pyruvic acid as substrates. Transaminase activity was present in both head and body, nevertheless the specific activity was higher in the former. In bodies, pyruvic acid was the best amino acceptor whereas in heads it was α-oxoglutaric acid. The variation of kynurenine transaminase during development of D. sordidula showed, in the larval and pupal stages, activity levels practically constant and much lower than those found in the adult. This seems to suggest a preferential role of this enzyme in the metabolism of intermediates in the biosynthesis of ommochromes.
Toxicon | 2012
Inmaculada García-Robles; Camila Ochoa-Campuzano; Estefanía Contreras; M. Dolores Real; Carolina Rausell
Bacillus thuringiensis Cry toxins are widely used as biocontrol agents in bioinsecticides and transgenic plants. In the three domain-Cry toxins, domain II has been identified as an important determinant of their highly specific activity against insects. In this work, we assessed the role in membrane associated proteolysis and toxicity in Colorado potato beetle (CPB) of a previously reported ADAM recognition motif present in Cry3Aa toxin domain II. We used site-directed mutagenesis to modify the Bacillus thuringiensis cry3A gene in amino acid residues 344, 346, 347, 351 and 353 of the ADAM recognition motif in Cry3Aa toxin. Cry3Aa toxin mutants displayed decreased toxicity when compared to the wild type toxin and impaired ability to compete CPB brush border membrane associated cleavage of an ADAM fluorogenic substrate. Although the proteolytic profile of Cry3Aa toxin mutants generated by brush border membrane associated proteases was similar to that of Cry3Aa toxin, the metalloprotease inhibitor 1,10-phenanthroline was less efficient on the proteolysis of mutants than on that of the wild type toxin. The relevance of the Cry3Aa-ADAM interaction through the predicted recognition sequence was further confirmed by analyzing the effect of membrane integrity disturbance on Cry3Aa toxin membrane associated proteolysis and CPB larvae toxicity. Data support that Cry3Aa proteolysis, as a result of the interaction with ADAM through the Cry3Aa recognition motif, is essential for Cry3Aa toxic action in CPB. Detailed knowledge of Cry3Aa interaction with CPB midgut membrane should facilitate the development of more effective Bt based products against this devastating pest and other Coleoptera.