Amy Barrett
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy Barrett.
Nature Genetics | 2012
Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio
Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
American Journal of Human Genetics | 2013
Elin Grundberg; Eshwar Meduri; Johanna K. Sandling; Åsa K. Hedman; Sarah Keildson; Alfonso Buil; Stephan Busche; Wei Yuan; James Nisbet; Magdalena Sekowska; Alicja Wilk; Amy Barrett; Kerrin S. Small; Bing Ge; Maxime Caron; So-Youn Shin; Mark Lathrop; Emmanouil T. Dermitzakis; Mark I. McCarthy; Tim D. Spector; Jordana T. Bell; Panos Deloukas
Epigenetic modifications such as DNA methylation play a key role in gene regulation and disease susceptibility. However, little is known about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environmental factors. We utilized the Multiple Tissue Human Expression Resource (MuTHER) and generated Illumina 450K adipose methylome data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that DNA methylation variation was highly heritable (h(2)median = 0.34) and that shared environmental effects correlated with metabolic phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we found that 6% of the loci played a role in regulating both gene expression and DNA methylation. These associations were bidirectional, but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results showed widespread population invariability yet sequence dependence on adipose DNA methylation but that incorporating maps of regulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner.
Diabetes | 2012
Anders H. Rosengren; Matthias Braun; Taman Mahdi; Sofia Andersson; Mary E. Travers; Makoto Shigeto; Enming Zhang; Peter Almgren; Claes Ladenvall; Annika S. Axelsson; Anna Edlund; Morten Gram Pedersen; Anna Maria Jönsson; Reshma Ramracheya; Yunzhao Tang; Jonathan N. Walker; Amy Barrett; Paul Johnson; Valeriya Lyssenko; Mark I. McCarthy; Leif Groop; Albert Salehi; Anna L. Gloyn; Erik Renström; Patrik Rorsman; Lena Eliasson
The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca2+ sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
Molecular Systems Biology | 2014
George Nicholson; Mattias Rantalainen; Anthony D. Maher; Jia V. Li; Daniel Malmodin; Kourosh R. Ahmadi; Johan H. Faber; Ingileif B. Hallgrímsdóttir; Amy Barrett; Henrik Toft; Maria Krestyaninova; Juris Viksna; Sudeshna Guha Neogi; Marc-Emmanuel Dumas; Ugis Sarkans; Bernard W. Silverman; Peter Donnelly; Jeremy K. Nicholson; Maxine Allen; Krina T. Zondervan; John C. Lindon; Tim D. Spector; Mark McCarthy; Elaine Holmes; Dorrit Baunsgaard; Christopher Holmes
1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top‐down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource. In our unique design, identical and non‐identical twin pairs donated plasma and urine samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed variation in metabolite concentration into familial (genetic and common‐environmental), individual‐environmental, and longitudinally unstable components. We estimate that stable variation, comprising familial and individual‐environmental factors, accounts on average for 60% (plasma) and 47% (urine) of biological variation in 1H NMR‐detectable metabolite concentrations. Clinically predictive metabolic variation is likely nested within this stable component, so our results have implications for the effective design of biomarker‐discovery studies. We provide a power‐calculation method which reveals that sample sizes of a few thousand should offer sufficient statistical precision to detect 1H NMR‐based biomarkers quantifying predisposition to disease.
Analytical Chemistry | 2008
Derek J. Crockford; Anthony D. Maher; Kourosh R. Ahmadi; Amy Barrett; Robert S. Plumb; Ian D. Wilson; Jeremy K. Nicholson
Statistical HeterospectroscopY (SHY) is a statistical strategy for the coanalysis of multiple spectroscopic data sets acquired in parallel on the same samples. This method operates through the analysis of the intrinsic covariance between signal intensities in the same and related molecular fingerprints measured by multiple spectroscopic techniques across cohorts of samples. Here, the method is applied to 600-MHz (1)H NMR and UPLC-TOF-MS (E) data obtained from human urine samples ( n = 86) from a subset of an epidemiological population unselected for any relevant phenotype or disease factor. We show that direct cross-correlation of spectral parameters, viz. chemical shifts from NMR and m/ z data from MS, together with fragment analysis from MS (E) scans, leads not only to the detection of numerous endogenous urinary metabolites but also the identification of drug metabolites that are part of the latent use of drugs by the population. We show previously unreported positive mode ions of ibuprofen metabolites with their NMR correlates and suggest the detection of new metabolites of disopyramide in the population samples. This approach is of great potential value in the description of population xenometabolomes and in population pharmacology studies, and indeed for drug metabolism studies in general.
BMC Genomics | 2010
Josine L. Min; Amy Barrett; Tim Watts; Fredrik Pettersson; Helen Lockstone; Cecilia M. Lindgren; Jennifer M. Taylor; Maxine Allen; Krina T. Zondervan; Mark McCarthy
BackgroundReadily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets.ResultsGene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range ρ = 0.90-1.00). The PAXgene samples showed a decrease in the number of expressed genes (P < 1*10-16) with higher variability (P < 1*10-16) compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (ρ = 0.83; ρ = 0.79) of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (ρ = 0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs.ConclusionGene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies.
PLOS Genetics | 2015
Martijn van de Bunt; Jocelyn E. Manning Fox; Xiao-Qing Dai; Amy Barrett; Caleb L. Grey; Lei Li; Amanda J. Bennett; Paul Johnson; R. V. Rajotte; Kyle J. Gaulton; Emmanouil T. Dermitzakis; Patrick E. MacDonald; Mark I. McCarthy; A L Gloyn
The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci.
Diabetes | 2016
Soren K. Thomsen; Alessandro Ceroni; Martijn van de Bunt; Carla Burrows; Amy Barrett; Raphael Scharfmann; Daniel Ebner; Mark I. McCarthy; Anna L. Gloyn
Most genetic association signals for type 2 diabetes risk are located in noncoding regions of the genome, hindering translation into molecular mechanisms. Physiological studies have shown a majority of disease-associated variants to exert their effects through pancreatic islet dysfunction. Systematically characterizing the role of regional transcripts in β-cell function could identify the underlying disease-causing genes, but large-scale studies in human cellular models have previously been impractical. We developed a robust and scalable strategy based on arrayed gene silencing in the human β-cell line EndoC-βH1. In a screen of 300 positional candidates selected from 75 type 2 diabetes regions, each gene was assayed for effects on multiple disease–relevant phenotypes, including insulin secretion and cellular proliferation. We identified a total of 45 genes involved in β-cell function, pointing to possible causal mechanisms at 37 disease-associated loci. The results showed a strong enrichment for genes implicated in monogenic diabetes. Selected effects were validated in a follow-up study, including several genes (ARL15, ZMIZ1, and THADA) with previously unknown or poorly described roles in β-cell biology. We have demonstrated the feasibility of systematic functional screening in a human β-cell model and successfully prioritized plausible disease-causing genes at more than half of the regions investigated.
Diabetes | 2014
Sarah Keildson; João Fadista; Claes Ladenvall; Åsa K. Hedman; Targ Elgzyri; Kerrin S. Small; Elin Grundberg; Alexandra C. Nica; Daniel Glass; J. Brent Richards; Amy Barrett; James Nisbet; Hou-Feng Zheng; Tina Rönn; Kristoffer Ström; Karl-Fredrik Eriksson; Inga Prokopenko; Tim D. Spector; Emmanouil T. Dermitzakis; Panos Deloukas; Mark I. McCarthy; Johan Rung; Leif Groop; Paul W. Franks; Cecilia M. Lindgren; Ola Hansson
Using an integrative approach in which genetic variation, gene expression, and clinical phenotypes are assessed in relevant tissues may help functionally characterize the contribution of genetics to disease susceptibility. We sought to identify genetic variation influencing skeletal muscle gene expression (expression quantitative trait loci [eQTLs]) as well as expression associated with measures of insulin sensitivity. We investigated associations of 3,799,401 genetic variants in expression of >7,000 genes from three cohorts (n = 104). We identified 287 genes with cis-acting eQTLs (false discovery rate [FDR] <5%; P < 1.96 × 10−5) and 49 expression–insulin sensitivity phenotype associations (i.e., fasting insulin, homeostasis model assessment–insulin resistance, and BMI) (FDR <5%; P = 1.34 × 10−4). One of these associations, fasting insulin/phosphofructokinase (PFKM), overlaps with an eQTL. Furthermore, the expression of PFKM, a rate-limiting enzyme in glycolysis, was nominally associated with glucose uptake in skeletal muscle (P = 0.026; n = 42) and overexpressed (Bonferroni-corrected P = 0.03) in skeletal muscle of patients with T2D (n = 102) compared with normoglycemic controls (n = 87). The PFKM eQTL (rs4547172; P = 7.69 × 10−6) was nominally associated with glucose uptake, glucose oxidation rate, intramuscular triglyceride content, and metabolic flexibility (P = 0.016–0.048; n = 178). We explored eQTL results using published data from genome-wide association studies (DIAGRAM and MAGIC), and a proxy for the PFKM eQTL (rs11168327; r2 = 0.75) was nominally associated with T2D (DIAGRAM P = 2.7 × 10−3). Taken together, our analysis highlights PFKM as a potential regulator of skeletal muscle insulin sensitivity.
Diabetes | 2016
Aparna Pal; Thomas P. Potjer; Soren K. Thomsen; Hui Jin Ng; Amy Barrett; Raphael Scharfmann; Tim James; D. T. Bishop; Fredrik Karpe; Ian F. Godsland; Hans F. A. Vasen; Julia Newton-Bishop; Hanno Pijl; Mark McCarthy; Anna L. Gloyn
At the CDKN2A/B locus, three independent signals for type 2 diabetes risk are located in a noncoding region near CDKN2A. The disease-associated alleles have been implicated in reduced β-cell function, but the underlying mechanism remains elusive. In mice, β-cell–specific loss of Cdkn2a causes hyperplasia, while overexpression leads to diabetes, highlighting CDKN2A as a candidate effector transcript. Rare CDKN2A loss-of-function mutations are a cause of familial melanoma and offer the opportunity to determine the impact of CDKN2A haploinsufficiency on glucose homeostasis in humans. To test the hypothesis that such individuals have improved β-cell function, we performed oral and intravenous glucose tolerance tests on mutation carriers and matched control subjects. Compared with control subjects, carriers displayed increased insulin secretion, impaired insulin sensitivity, and reduced hepatic insulin clearance. These results are consistent with a model whereby CDKN2A loss affects a range of different tissues, including pancreatic β-cells and liver. To test for direct effects of CDKN2A-loss on β-cell function, we performed knockdown in a human β-cell line, EndoC-bH1. This revealed increased insulin secretion independent of proliferation. Overall, we demonstrated that CDKN2A is an important regulator of glucose homeostasis in humans, thus supporting its candidacy as an effector transcript for type 2 diabetes–associated alleles in the region.