Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cecilia M. Lindgren is active.

Publication


Featured researches published by Cecilia M. Lindgren.


Nature Genetics | 2003

PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.

Vamsi K. Mootha; Cecilia M. Lindgren; Karl-Fredrik Eriksson; Aravind Subramanian; Smita Sihag; Joseph Lehar; Pere Puigserver; Emma Carlsson; Martin Ridderstråle; Esa Laurila; Nicholas E. Houstis; Mark J. Daly; Nick Patterson; Jill P. Mesirov; Todd R. Golub; Pablo Tamayo; Bruce M. Spiegelman; Eric S. Lander; Joel N. Hirschhorn; David Altshuler; Leif Groop

DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1α and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.


Science | 2007

Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes

Eleftheria Zeggini; Michael N. Weedon; Cecilia M. Lindgren; Timothy M. Frayling; Katherine S. Elliott; Hana Lango; Nicholas J. Timpson; John Perry; Nigel W. Rayner; Rachel M. Freathy; Jeffrey C. Barrett; Beverley M. Shields; Andrew P. Morris; Sian Ellard; Christopher J. Groves; Lorna W. Harries; Jonathan Marchini; Katharine R. Owen; Beatrice Knight; Lon R. Cardon; M. Walker; Graham A. Hitman; Andrew D. Morris; Alex S. F. Doney; Mark I. McCarthy; Andrew T. Hattersley

The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.


Nature Genetics | 2008

Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

Eleftheria Zeggini; Laura J. Scott; Richa Saxena; Benjamin F. Voight; Jonathan Marchini; Tianle Hu; Paul I. W. de Bakker; Gonçalo R. Abecasis; Peter Almgren; Gitte Andersen; Kristin Ardlie; Kristina Bengtsson Boström; Richard N. Bergman; Lori L. Bonnycastle; Knut Borch-Johnsen; Noël P. Burtt; Hong Chen; Peter S. Chines; Mark J. Daly; Parimal Deodhar; Chia-Jen Ding; Alex S. F. Doney; William L. Duren; Katherine S. Elliott; Michael R. Erdos; Timothy M. Frayling; Rachel M. Freathy; Lauren Gianniny; Harald Grallert; Niels Grarup

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and ∼2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 × 10−14), CDC123-CAMK1D (P = 1.2 × 10−10), TSPAN8-LGR5 (P = 1.1 × 10−9), THADA (P = 1.1 × 10−9), ADAMTS9 (P = 1.2 × 10−8) and NOTCH2 (P = 4.1 × 10−8) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


PLOS Genetics | 2012

The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits

Benjamin F. Voight; Hyun Min Kang; Jinhui Ding; C. Palmer; Carlo Sidore; Peter S. Chines; N. P. Burtt; Christian Fuchsberger; Yanming Li; J. Erdmann; Timothy M. Frayling; Iris M. Heid; Anne U. Jackson; Toby Johnson; Tuomas O. Kilpeläinen; Cecilia M. Lindgren; Andrew P. Morris; Inga Prokopenko; Joshua C. Randall; Richa Saxena; Nicole Soranzo; Elizabeth K. Speliotes; Tanya M. Teslovich; Eleanor Wheeler; Jared Maguire; Melissa Parkin; Simon Potter; Nigel W. Rayner; Neil R. Robertson; Kathy Stirrups

Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the “Metabochip,” a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.


PLOS Genetics | 2011

The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

Alexandra C. Nica; Leopold Parts; Daniel Glass; James Nisbet; Amy Barrett; Magdalena Sekowska; Mary E. Travers; Simon Potter; Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Veronique Bataille; Jordana T. Bell; Gabriela Surdulescu; Antigone S. Dimas; Catherine E. Ingle; Frank O. Nestle; Paola Di Meglio; Josine L. Min; Alicja Wilk; Christopher J. Hammond; Neelam Hassanali; Tsun-Po Yang; Stephen B. Montgomery; Steve O'Rahilly; Cecilia M. Lindgren; Krina T. Zondervan; Nicole Soranzo; Inês Barroso; Richard Durbin

While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.


Nature Genetics | 2007

A common variant of HMGA2 is associated with adult and childhood height in the general population

Michael N. Weedon; Guillaume Lettre; Rachel M. Freathy; Cecilia M. Lindgren; Benjamin F. Voight; John Perry; Katherine S. Elliott; Rachel Hackett; Candace Guiducci; Beverley M. Shields; Eleftheria Zeggini; Hana Lango; Valeriya Lyssenko; Nicholas J. Timpson; Noël P. Burtt; Nigel W. Rayner; Richa Saxena; Kristin Ardlie; Jonathan H Tobias; Andy R Ness; Susan M. Ring; Colin N. A. Palmer; Andrew D. Morris; Leena Peltonen; Veikko Salomaa; George Davey Smith; Leif Groop; Andrew T. Hattersley; Mark I. McCarthy; Joel N. Hirschhorn

Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 × 10−8). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 × 10−11, overall P = 4 × 10−16, including the genome-wide association data). We also observed the association in children (P = 1 × 10−6, N = 6,827) and a tall/short case-control study (P = 4 × 10−6, N = 3,207). We estimate that rs1042725 explains ∼0.3% of population variation in height (∼0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitativetraits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.


Nature Genetics | 2005

MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction

Maria Swanberg; Olle Lidman; Leonid Padyukov; Per Eriksson; Eva Åkesson; Maja Jagodic; Anna Lobell; Mohsen Khademi; Ola Börjesson; Cecilia M. Lindgren; Pia Lundman; Anthony J. Brookes; Juha Kere; Holger Luthman; Lars Alfredsson; Jan Hillert; Lars Klareskog; Anders Hamsten; Fredrik Piehl; Tomas Olsson

Antigen presentation to T cells by MHC molecules is essential for adaptive immune responses. To determine the exact position of a gene affecting expression of MHC molecules, we finely mapped a previously defined rat quantitative trait locus regulating MHC class II on microglia in an advanced intercross line. We identified a small interval including the gene MHC class II transactivator (Mhc2ta) and, using a map over six inbred strains combined with gene sequencing and expression analysis, two conserved Mhc2ta haplotypes segregating with MHC class II levels. In humans, a –168A → G polymorphism in the type III promoter of the MHC class II transactivator (MHC2TA) was associated with increased susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction, as well as lower expression of MHC2TA after stimulation of leukocytes with interferon-γ. We conclude that polymorphisms in Mhc2ta and MHC2TA result in differential MHC molecule expression and are associated with susceptibility to common complex diseases with inflammatory components.


Diabetes | 2008

Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected, given its effect on BMI

Rachel M. Freathy; Nicholas J. Timpson; Debbie A. Lawlor; Anneli Pouta; Yoav Ben-Shlomo; Aimo Ruokonen; Shah Ebrahim; Beverley M. Shields; Eleftheria Zeggini; Michael N. Weedon; Cecilia M. Lindgren; Hana Lango; David Melzer; Luigi Ferrucci; Giuseppe Paolisso; Matthew J. Neville; Fredrik Karpe; Colin N. A. Palmer; Andrew D. Morris; Paul Elliott; Marjo-Riitta Järvelin; George Davey Smith; Mark McCarthy; Andrew T. Hattersley; Timothy M. Frayling

OBJECTIVE—Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits. RESEARCH DESIGN AND METHODS—We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations. RESULTS—Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013–0.064]; P = 0.003), glucose (0.024 [0.001–0.048]; P = 0.044), and triglycerides (0.028 [0.003–0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008–0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, γ-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P < 0.05. For all metabolic traits, effect sizes were consistent with those expected for the per allele change in BMI. FTO genotype was associated with a higher odds of metabolic syndrome (odds ratio 1.17 [95% CI 1.10–1.25]; P = 3 × 10−6). CONCLUSIONS—FTO genotype is associated with metabolic traits to an extent entirely consistent with its effect on BMI. Sample sizes of >12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.


Nature Genetics | 2014

Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

Jason Flannick; Gudmar Thorleifsson; Nicola L. Beer; Suzanne B.R. Jacobs; Niels Grarup; Noël P. Burtt; Anubha Mahajan; Christian Fuchsberger; Gil Atzmon; Rafn Benediktsson; John Blangero; Bowden Dw; Ivan Brandslund; Julia Brosnan; Frank Burslem; John Chambers; Yoon Shin Cho; Cramer Christensen; Desiree Douglas; Ravindranath Duggirala; Zachary Dymek; Yossi Farjoun; Timothy Fennell; Pierre Fontanillas; Tom Forsén; Stacey Gabriel; Benjamin Glaser; Daniel F. Gudbjartsson; Craig L. Hanis; Torben Hansen

Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (−0.17 s.d., P = 4.6 × 10−4). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.

Collaboration


Dive into the Cecilia M. Lindgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Kere

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge