Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy F. Roth is active.

Publication


Featured researches published by Amy F. Roth.


Cell | 2006

Global Analysis of Protein Palmitoylation in Yeast

Amy F. Roth; Junmei Wan; Aaron O. Bailey; Beimeng Sun; Jason A. Kuchar; William N. Green; Brett S. Phinney; John R. Yates; Nicholas G. Davis

Protein palmitoylation is a reversible lipid modification that regulates membrane tethering for key proteins in cell signaling, cancer, neuronal transmission, and membrane trafficking. Palmitoylation has proven to be a difficult study: Specifying consensuses for predicting palmitoylation remain unavailable, and first-example palmitoylation enzymes--i.e., protein acyltransferases (PATs)--were identified only recently. Here, we use a new proteomic methodology that purifies and identifies palmitoylated proteins to characterize the palmitoyl proteome of the yeast Saccharomyces cerevisiae. Thirty-five new palmitoyl proteins are identified, including many SNARE proteins and amino acid permeases as well as many other participants in cellular signaling and membrane trafficking. Analysis of mutant yeast strains defective for members of the DHHC protein family, a putative PAT family, allows a matching of substrate palmitoyl proteins to modifying PATs and reveals the DHHC family to be a family of diverse PAT specificities responsible for most of the palmitoylation within the cell.


Nature | 2008

Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation

Rujun Kang; Junmei Wan; Pamela Arstikaitis; Hideto Takahashi; Kun Huang; Aaron O. Bailey; James Thompson; Amy F. Roth; Renaldo C. Drisdel; Ryan Mastro; William N. Green; John R. Yates; Nicholas G. Davis; Alaa El-Husseini

Palmitoylation regulates diverse aspects of neuronal protein trafficking and function. Here a global characterization of rat neural palmitoyl-proteomes identifies most of the known neural palmitoyl proteins—68 in total, plus more than 200 new palmitoyl-protein candidates, with further testing confirming palmitoylation for 21 of these candidates. The new palmitoyl proteins include neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins, as well as SNAREs and other vesicular trafficking proteins. Of particular interest is the finding of palmitoylation for a brain-specific Cdc42 splice variant. The palmitoylated Cdc42 isoform (Cdc42-palm) differs from the canonical, prenylated form (Cdc42-prenyl), both with regard to localization and function: Cdc42-palm concentrates in dendritic spines and has a special role in inducing these post-synaptic structures. Furthermore, assessing palmitoylation dynamics in drug-induced activity models identifies rapidly induced changes for Cdc42 as well as for other synaptic palmitoyl proteins, suggesting that palmitoylation may participate broadly in the activity-driven changes that shape synapse morphology and function.


Journal of Cell Biology | 2002

The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase

Amy F. Roth; Ying Feng; Linyi Chen; Nicholas G. Davis

Protein palmitoylation has been long appreciated for its role in tethering proteins to membranes, yet the enzymes responsible for this modification have eluded identification. Here, experiments in vivo and in vitro demonstrate that Akr1p, a polytopic membrane protein containing a DHHC cysteine-rich domain (CRD), is a palmitoyl transferase (PTase). In vivo, we find that the casein kinase Yck2p is palmitoylated and that Akr1p function is required for this modification. Akr1p, purified to near homogeneity from yeast membranes, catalyzes Yck2p palmitoylation in vitro, indicating that Akr1p is itself a PTase. Palmitoylation is stimulated by added ATP. Furthermore, during the reaction, Akr1p is itself palmitoylated, suggesting a role for a palmitoyl-Akr1p intermediate in the overall reaction mechanism. Mutations introduced into the Akr1p DHHC-CRD eliminate both the trans- and autopalmitoylation activities, indicating a central participation of this conserved sequence in the enzymatic reaction. Finally, our results indicate that palmitoylation within the yeast cell is controlled by multiple PTase specificities. The conserved DHHC-CRD sequence, we propose, is the signature feature of an evolutionarily widespread PTase family.


Nature Protocols | 2007

Palmitoylated proteins: purification and identification

Junmei Wan; Amy F. Roth; Aaron O. Bailey; Nicholas G. Davis

This proteomic protocol purifies and identifies palmitoylated proteins (i.e., S-acylated proteins) from complex protein extracts. The method relies on an acyl-biotinyl exchange chemistry in which biotin moieties are substituted for the thioester-linked protein acyl-modifications through a sequence of three in vitro chemical steps: (i) blockade of free thiols with N-ethylmaleimide; (ii) cleavage of the Cys-palmitoyl thioester linkages with hydroxylamine; and (iii) labeling of thiols, newly exposed by the hydroxylamine, with biotin–HPDP (Biotin-HPDP-N-[6-(Biotinamido)hexyl]-3′-(2′-pyridyldithio)propionamide. The biotinylated proteins are then affinity-purified using streptavidin–agarose and identified by multi-dimensional protein identification technology (MuDPIT), a high-throughput, tandem mass spectrometry (MS/MS)–based proteomic technology. MuDPIT also affords a semi-quantitative analysis that may be used to assess the gross changes induced to the global palmitoylation profile by mutation or drugs. Typically, 2–3 weeks are required for this analysis.


Journal of Cell Biology | 2006

Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3.

Karen K.Y. Lam; Michael Davey; Beimeng Sun; Amy F. Roth; Nicholas G. Davis; Elizabeth Conibear

The yeast chitin synthase Chs3 provides a well-studied paradigm for polytopic membrane protein trafficking. In this study, high-throughput analysis of the yeast deletion collection identifies a requirement for Pfa4, which is an uncharacterized protein with protein acyl transferase (PAT) homology, in Chs3 transport. PATs, which are the enzymatic mediators of protein palmitoylation, have only recently been discovered, and few substrates have been identified. We find that Chs3 is palmitoylated and that this modification is Pfa4-dependent, indicating that Pfa4 is indeed a PAT. Chs3 palmitoylation is required for ER export, but not for interaction with its dedicated ER chaperone, Chs7. Nonetheless, both palmitoylation and chaperone association are required to prevent the accumulation of Chs3 in high–molecular mass aggregates at the ER. Our data indicate that palmitoylation is necessary for Chs3 to attain an export-competent conformation, and suggest the possibility of a more general role for palmitoylation in the ER quality control of polytopic membrane proteins.


Journal of Biological Chemistry | 2005

Transmembrane Topology of the Protein Palmitoyl Transferase Akr1

Eugenia G. Politis; Amy F. Roth; Nicholas G. Davis

The two recently identified protein acyl transferases (PATs), Akr1p and Erf2p/Erf4p, point toward the DHHC protein family as a likely PAT family. The DHHC protein family, defined by the novel, zinc finger-like DHHC cysteine-rich domain (DHHC-CRD), is a diverse collection of polytopic membrane proteins extending through all eukaryotes. To define the PAT domains that are oriented to the cytoplasm and are thus available to effect the cytoplasmically limited palmitoyl modification, we have determined the transmembrane topology of the yeast PAT Akr1p. Portions of the yeast protein invertase (Suc2p) were inserted in-frame at 10 different hydrophilic sites within the Akr1 polypeptide. Three of the Akr1-Suc2-Akr1 insertion proteins were found to be extensively glycosylated, indicating that the invertase segment inserted at these Akr1p sites is luminally oriented. The remaining seven insertion proteins were not glycosylated, consistent with a cytoplasmic orientation for these sites. The results support a model in which the Akr1 polypeptide crosses the bilayer six times with the bulk of its hydrophilic domains disposed toward the cytoplasm. Cytoplasmic domains include both the relatively large, ankyrin repeat-containing N-terminal domain and the DHHC-CRD, which maps to a cytosolic loop segment. Functionality of the different Akr1-Suc2-Akr1 proteins also was examined. Insertions at only 4 of the 10 sites were found to disrupt Akr1p function. Interestingly, these four sites all map cytoplasmically, suggesting key roles for these cytoplasmic domains in Akr1 PAT function. Finally, extrapolating from the Akr1p topology, topology models are proposed for other DHHC protein family members.


Chemistry & Biology | 2013

Tracking Brain Palmitoylation Change: Predominance of Glial Change in a Mouse Model of Huntington’s Disease

Junmei Wan; Jeffrey N. Savas; Amy F. Roth; Shaun S. Sanders; Roshni R. Singaraja; Michael R. Hayden; John R. Yates; Nicholas G. Davis

Protein palmitoylation, a reversible lipid modification of proteins, is widely used in the nervous system, with dysregulated palmitoylation being implicated in a variety of neurological disorders. Described below is ABE/SILAM, a proteomic strategy that couples acyl-biotinyl exchange (ABE) purification of palmitoyl-proteins to whole animal stable isotope labeling (SILAM) to provide an accurate tracking of palmitoylation change within rodent disease models. As a first application, we have used ABE/SILAM to look at Huntingtons disease (HD), profiling palmitoylation change in two HD-relevant mouse mutants: the transgenic HD model mouse YAC128 and the hypomorphic Hip14-gt mouse, which has sharply reduced expression for HIP14 (Zdhhc17), a palmitoyl-transferase implicated in the HD disease process. Rather than mapping to the degenerating neurons themselves, the biggest disease changes instead map to astrocytes and oligodendrocytes (i.e., the supporting glial cells).


Acta Neuropathologica | 2016

Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation

Michael X. Henderson; Gregory S. Wirak; Yong quan Zhang; Feng Dai; Stephen D. Ginsberg; Natalia Dolzhanskaya; John F. Staropoli; Peter C.G. Nijssen; TuKiet T. Lam; Amy F. Roth; Nicholas G. Davis; Glyn Dawson; Milen Velinov; Sreeganga S. Chandra

Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways.


Molecular Biology of the Cell | 2011

The yeast kinase Yck2 has a tripartite palmitoylation signal

Amy F. Roth; Irene Papanayotou; Nicholas G. Davis

Yck2, like many palmitoylation substrate proteins, lacks hydrophobicity for targeting to membranes and thus to its Golgi-localized palmitoyl-transferase. Perhaps accommodating this targeting need, the Yck2 palmitoylation signal is found to be large and complex, consisting of domains local to, and distant from, the modification site cysteines.


Molecular and Cellular Biology | 2000

Asg7p-Ste3p Inhibition of Pheromone Signaling: Regulation of the Zygotic Transition to Vegetative Growth

Amy F. Roth; Bryce Nelson; Charlie Boone; Nicholas G. Davis

ABSTRACT The inappropriate expression of the a-factor pheromone receptor (Ste3p) in the MATa cell leads to a striking inhibition of the yeast pheromone response, the result of a functional interaction between Ste3p and some MATa-specific protein. The present work identifies this protein as Asg7p. Normally, expression of Ste3p and Asg7p is limited to distinct haploid mating types, Ste3p toMATα cells and Asg7p to MATa cells. Artificial coexpression of the two in the same cell, either a or α, leads to dramatic inhibition of the pheromone response. Ste3p-Asg7p coexpression also perturbs the membrane trafficking of Ste3p: Ste3p turnover is slowed, a result of an Asg7p-mediated retardation of the secretory delivery of the newly synthesized receptor to the plasma membrane. However, in the absence of ectopic Ste3p expression, theasg7Δ mutation is without consequence either for pheromone signaling or overall mating efficiency of a cells. Indeed, the sole phenotype that can be assigned to MATaasg7Δ cells is observed following zygotic fusion to its α mating partner. Though formed at wild-type efficiency, zygotes from these pairings are morphologically abnormal. The pattern of growth is deranged: emergence of the first mitotic bud is delayed, and, in its place, growth is apparently diverted into a novel structure superficially resembling the polarized mating projection characteristic of haploid cells responding to pheromone. Together these results suggest a mechanism in which, following the zygotic fusion event, Ste3p and Asg7p gain access to one another and together act to repress the pheromone response, promoting the transition of the new diploid cell to vegetative growth.

Collaboration


Dive into the Amy F. Roth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junmei Wan

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Beimeng Sun

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Aaron O. Bailey

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linyi Chen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge