Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sumit Parikh is active.

Publication


Featured researches published by Sumit Parikh.


The New England Journal of Medicine | 2012

Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants

Santhosh Girirajan; Jill A. Rosenfeld; Bradley P. Coe; Sumit Parikh; Neil R. Friedman; Amy Goldstein; Robyn A. Filipink; Juliann S. McConnell; Brad Angle; Wendy S. Meschino; Marjan M. Nezarati; Alexander Asamoah; Kelly E. Jackson; Gordon C. Gowans; Judith Martin; Erin P. Carmany; David W. Stockton; Rhonda E. Schnur; Lynette S. Penney; Donna M. Martin; Salmo Raskin; Kathleen A. Leppig; Heidi Thiese; Rosemarie Smith; Erika Aberg; Dmitriy Niyazov; Luis F. Escobar; Dima El-Khechen; Kisha Johnson; Robert Roger Lebel

BACKGROUND Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management. METHODS We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization. RESULTS Among the affected children, 10.1% carried a second large copy-number variant in addition to the primary genetic lesion. We identified seven genomic disorders, each defined by a specific copy-number variant, in which the affected children were more likely to carry multiple copy-number variants than were controls. We found that syndromic disorders could be distinguished from those with extreme phenotypic heterogeneity on the basis of the total number of copy-number variants and whether the variants are inherited or de novo. Children who carried two large copy-number variants of unknown clinical significance were eight times as likely to have developmental delay as were controls (odds ratio, 8.16; 95% confidence interval, 5.33 to 13.07; P=2.11×10(-38)). Among affected children, inherited copy-number variants tended to co-occur with a second-site large copy-number variant (Spearman correlation coefficient, 0.66; P<0.001). Boys were more likely than girls to have disorders of phenotypic heterogeneity (P<0.001), and mothers were more likely than fathers to transmit second-site copy-number variants to their offspring (P=0.02). CONCLUSIONS Multiple, large copy-number variants, including those of unknown pathogenic significance, compound to result in a severe clinical presentation, and secondary copy-number variants are preferentially transmitted from maternal carriers. (Funded by the Simons Foundation Autism Research Initiative and the National Institutes of Health.).


Molecular Genetics and Metabolism | 2008

The in-depth evaluation of suspected mitochondrial disease

Richard H. Haas; Sumit Parikh; Marni J. Falk; Russell P. Saneto; Nicole I. Wolf; Niklas Darin; Lee-Jun C. Wong; Bruce H. Cohen; Robert K. Naviaux

Mitochondrial disease confirmation and establishment of a specific molecular diagnosis requires extensive clinical and laboratory evaluation. Dual genome origins of mitochondrial disease, multi-organ system manifestations, and an ever increasing spectrum of recognized phenotypes represent the main diagnostic challenges. To overcome these obstacles, compiling information from a variety of diagnostic laboratory modalities can often provide sufficient evidence to establish an etiology. These include blood and tissue histochemical and analyte measurements, neuroimaging, provocative testing, enzymatic assays of tissue samples and cultured cells, as well as DNA analysis. As interpretation of results from these multifaceted investigations can become quite complex, the Diagnostic Committee of the Mitochondrial Medicine Society developed this review to provide an overview of currently available and emerging methodologies for the diagnosis of primary mitochondrial disease, with a focus on disorders characterized by impairment of oxidative phosphorylation. The aim of this work is to facilitate the diagnosis of mitochondrial disease by geneticists, neurologists, and other metabolic specialists who face the challenge of evaluating patients of all ages with suspected mitochondrial disease.


Pediatrics | 2007

Mitochondrial Disease: A Practical Approach for Primary Care Physicians

Richard H. Haas; Sumit Parikh; Marni J. Falk; Russell P. Saneto; Nicole I. Wolf; Niklas Darin; Bruce H. Cohen

Notorious variability in the presentation of mitochondrial disease in the infant and young child complicates its clinical diagnosis. Mitochondrial disease is not a single entity but, rather, a heterogeneous group of disorders characterized by impaired energy production due to genetically based oxidative phosphorylation dysfunction. Together, these disorders constitute the most common neurometabolic disease of childhood with an estimated minimal risk of developing mitochondrial disease of 1 in 5000. Diagnostic difficulty results from not only the variable and often nonspecific presentation of these disorders but also from the absence of a reliable biomarker specific for the screening or diagnosis of mitochondrial disease. A simplified and standardized approach to facilitate the clinical recognition of mitochondrial disease by primary physicians is needed. With this article we aimed to improve the clinical recognition of mitochondrial disease by primary care providers and empower the generalist to initiate appropriate baseline diagnostic testing before determining the need for specialist referral. This is particularly important in light of the international shortage of metabolism specialists to comprehensively evaluate this large and complex disease population. It is hoped that greater familiarity among primary care physicians with the protean manifestations of mitochondrial disease will facilitate the proper diagnosis and management of this growing cohort of pediatric patients who present across all specialties.


Genetics in Medicine | 2015

Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Bruce H. Cohen; Marni J. Falk; Carol L. Greene; Andrea Gropman; Richard H. Haas; Michio Hirano; Phil G. Morgan; Katherine B. Sims; Mark A. Tarnopolsky; Johan L. K. Van Hove; Lynne A. Wolfe; Salvatore DiMauro

Purpose:The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. Methods:The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Results:Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease.Conclusion:The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.Genet Med 17 9, 689–701.


Molecular Genetics and Metabolism | 2015

A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies.

Sumit Parikh; Geneviève Bernard; Richard J. Leventer; Marjo S. van der Knaap; Johan L.K. Van Hove; Amy Pizzino; Nathan McNeill; Guy Helman; Cas Simons; Johanna L. Schmidt; William B. Rizzo; Marc C. Patterson; Ryan J. Taft; Adeline Vanderver

Leukodystrophies (LD) and genetic leukoencephalopathies (gLE) are disorders that result in white matter abnormalities in the central nervous system (CNS). Magnetic resonance (MR) imaging (MRI) has dramatically improved and systematized the diagnosis of LDs and gLEs, and in combination with specific clinical features, such as Addisons disease in Adrenoleukodystrophy or hypodontia in Pol-III related or 4H leukodystrophy, can often resolve a case with a minimum of testing. The diagnostic odyssey for the majority LD and gLE patients, however, remains extensive--many patients will wait nearly a decade for a definitive diagnosis and at least half will remain unresolved. The combination of MRI, careful clinical evaluation and next generation genetic sequencing holds promise for both expediting the diagnostic process and dramatically reducing the number of unresolved cases. Here we present a workflow detailing the Global Leukodystrophy Initiative (GLIA) consensus recommendations for an approach to clinical diagnosis, including salient clinical features suggesting a specific diagnosis, neuroimaging features and molecular genetic testing. We also discuss recommendations on the use of broad-spectrum next-generation sequencing in instances of ambiguous MRI or clinical findings. We conclude with a proposal for systematic trials of genome-wide agnostic testing as a first line diagnostic in LDs and gLEs given the increasing number of genes associated with these disorders.


Current Treatment Options in Neurology | 2014

Treatment of Mitochondrial Disorders

Sreenivas Avula; Sumit Parikh; Scott Demarest; Jonathan E. Kurz; Andrea Gropman

Opinion statementWhile numerous treatments for mitochondrial disorders have been suggested, relatively few have undergone controlled clinical trials. Treatment of these disorders is challenging, as only symptomatic therapy is available. In this review we will focus on newer drugs and treatment trials in mitochondrial diseases, with a special focus on medications to avoid in treating epilepsy and ICU patient with mitochondrial disease, which has not been included in such a review. Readers are also referred to the opinion statement in A Modern Approach to the Treatment of Mitochondrial Disease published in Current Treatment Options in Neurology 2009. Many of the supplements used for treatment were reviewed in the previous abstract, and dosing guidelines were provided. The focus of this review is on items not previously covered in depth, and our discussion includes more recently studied compounds as well as any relevant updates on older compounds . We review a variety of vitamins and xenobiotics, including dichloroacetate (DCA), arginine, coenzyme Q10, idebenone, EPI-743, and exercise training. Treatment of epilepsy, which is a common feature in many mitochondrial phenotypes, warrants special consideration due to the added toxicity of certain medications, and we provide a discussion of these unique treatment challenges. Interesting, however, with only a few exceptions, the treatment strategies for epilepsy in mitochondrial cytopathies are the same as for epilepsy without mitochondrial dysfunction. We also discuss intensive care management, building upon similar reviews, adding new dimensions, and demonstrating the complexity of overall care of these patients.


Annals of clinical and translational neurology | 2016

Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy

Jacy L. Wagnon; Bryan S. Barker; James A. Hounshell; Charlotte A. Haaxma; Amy Shealy; Timothy Moss; Sumit Parikh; Ricka D. Messer; Manoj K. Patel; Miriam H. Meisler

The early infantile epileptic encephalopathy type 13 (EIEE13, OMIM #614558) results from de novo missense mutations of SCN8A encoding the voltage‐gated sodium channel Nav1.6. More than 20% of patients have recurrent mutations in residues Arg1617 or Arg1872. Our goal was to determine the functional effects of these mutations on channel properties.


Pharmacotherapy | 2016

Implementation of Clinical Pharmacogenomics within a Large Health System: From Electronic Health Record Decision Support to Consultation Services

J. Kevin Hicks; David Stowe; Marc A. Willner; Maya Wai; Thomas M. Daly; Steven M. Gordon; Bret A. Lashner; Sumit Parikh; Robert White; Kathryn Teng; Timothy Moss; Angelika Erwin; Jeffrey J. Chalmers; Charis Eng; Scott J. Knoer

The number of clinically relevant gene‐based guidelines and recommendations pertaining to drug prescribing continues to grow. Incorporating gene–drug interaction information into the drug‐prescribing process can help optimize pharmacotherapy outcomes and improve patient safety. However, pharmacogenomic implementation barriers exist such as integration of pharmacogenomic results into electronic health records (EHRs), development and deployment of pharmacogenomic decision support tools to EHRs, and feasible models for establishing ambulatory pharmacogenomic clinics. We describe the development of pharmacist‐managed pharmacogenomic services within a large health system. The Clinical Pharmacogenetics Implementation Consortium guidelines for HLA‐B*57:01‐abacavir, HLA‐B*15:02‐carbamazepine, and TPMT‐thiopurines (i.e., azathioprine, mercaptopurine, and thioguanine) were systematically integrated into patient care. Sixty‐three custom rules and alerts (20 for TPMT‐thiopurines, 8 for HLA‐B*57:01‐abacavir, and 35 for HLA‐B*15:02‐anticonvulsants) were developed and deployed to the EHR for the purpose of providing point‐of‐care pharmacogenomic decision support. In addition, a pharmacist and physician‐geneticist collaboration established a pharmacogenomics ambulatory clinic. This clinic provides genetic testing when warranted, result interpretation along with pharmacotherapy recommendations, and patient education. Our processes for developing these pharmacogenomic services and solutions for addressing implementation barriers are presented.


Human Mutation | 2012

Recurrent deletions and reciprocal duplications of 10q11.21q11.23 including CHAT and SLC18A3 are likely mediated by complex low‐copy repeats

Pawel Stankiewicz; Shashikant Kulkarni; Avinash V. Dharmadhikari; Srirangan Sampath; Samarth Bhatt; Tamim H. Shaikh; Zhilian Xia; Amber N. Pursley; M. Lance Cooper; Marwan Shinawi; Alex R. Paciorkowski; Dorothy K. Grange; Michael J. Noetzel; Scott Saunders; Paul Simons; Marshall Summar; Brendan Lee; Fernando Scaglia; Florence Fellmann; Danielle Martinet; Jacques S. Beckmann; Alexander Asamoah; Kathryn Platky; Susan E Sparks; Ann S. Martin; Suneeta Madan-Khetarpal; Jacqueline M. Hoover; Livija Medne; Carsten G. Bönnemann; John B. Moeschler

We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers. Hum Mutat 33:165–179, 2012.


JAMA Neurology | 2016

Recommendations for the Management of Strokelike Episodes in Patients With Mitochondrial Encephalomyopathy, Lactic Acidosis, and Strokelike Episodes.

Mary Kay Koenig; Lisa T. Emrick; Amel Karaa; Mark S. Korson; Fernando Scaglia; Sumit Parikh; Amy Goldstein

IMPORTANCE Strokelike episodes are a cardinal feature of several mitochondrial syndromes, including mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS). Recent advances in the understanding of the pathophysiologic mechanisms of strokelike episodes in MELAS have led to improved treatment options. OBSERVATIONS Current understanding of the cause of strokelike episodes in MELAS and present recommendations to assist in the identification and treatment of patients with MELAS who present with stroke are presented. Mounting evidence points toward a benefit of the nitric oxide precursors, arginine, to both prevent and reduce the severity of strokes in patients with MELAS. CONCLUSIONS AND RELEVANCE Although much information is still needed regarding the appropriate dosing and timing of arginine therapy in patients with MELAS, urgent administration of nitric oxide precursors in patients with MELAS ameliorates the clinical symptoms associated with strokelike episodes.

Collaboration


Dive into the Sumit Parikh's collaboration.

Top Co-Authors

Avatar

Bruce H. Cohen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Marni J. Falk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amy Goldstein

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Scaglia

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Dimmock

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge