Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy S. Turmelle is active.

Publication


Featured researches published by Amy S. Turmelle.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A distinct lineage of influenza A virus from bats

Suxiang Tong; Yan Li; Pierre Rivailler; Christina Conrardy; Danilo A. Alvarez Castillo; Li-Mei Chen; Sergio Recuenco; James A. Ellison; Charles T. Davis; Ian A. York; Amy S. Turmelle; David Moran; Shannon Rogers; Mang Shi; Ying Tao; Michael R. Weil; Kevin Tang; Lori A. Rowe; Scott Sammons; Xiyan Xu; Michael Frace; Kim A. Lindblade; Nancy J. Cox; Larry J. Anderson; Charles E. Rupprecht; Ruben O. Donis

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.


Science | 2010

Host Phylogeny Constrains Cross-Species Emergence and Establishment of Rabies Virus in Bats

Daniel G. Streicker; Amy S. Turmelle; Maarten J. Vonhof; Ivan V. Kuzmin; Gary F. McCracken; Charles E. Rupprecht

Threats to and from Bats Bats appear to be able to host an assortment of alarming pathogens, which, if they do not extirpate the bats, have implications for human health (see the Perspective by Daszak). For example, exposure to bats is the main source of human rabies in the Americas. But rabies is not generally transmitted among people; humans are a dead end for the virus. Streicker et al. (p. 676, see the cover) show that rabies virus lineages tend to be specific for bat lineages. It seems that although rabies viruses have the potential for rapid evolution, this property alone is not enough to overcome genetic barriers, which inhibit the onward transmission of rabies virus into a new species. White-nose syndrome, an exotic fungal infection of bats, has, over the past 3 years, spread from upstate New York to West Virginia, killing on average 70% of the animals in a hibernating colony. The infection makes bats restless over winter when they should be dormant, which makes them exhaust their fat reserves, resulting in the death of over a million bats. Frick et al. (p. 679) have analyzed population data collected on bats in the northeastern United States for the past 30 years and show that, mainly owing to white-nose syndrome, the once abundant little brown bat is heading for regional extinction in the next 16 years or so. This scale of loss of an insectivorous mammal is expected to have repercussions for ecosystem integrity and for the economic costs of agricultural pest control. Rabies virus’ innate capacity to replicate and adapt cannot overcome host genetic barriers to cross-species transfer. For RNA viruses, rapid viral evolution and the biological similarity of closely related host species have been proposed as key determinants of the occurrence and long-term outcome of cross-species transmission. Using a data set of hundreds of rabies viruses sampled from 23 North American bat species, we present a general framework to quantify per capita rates of cross-species transmission and reconstruct historical patterns of viral establishment in new host species using molecular sequence data. These estimates demonstrate diminishing frequencies of both cross-species transmission and host shifts with increasing phylogenetic distance between bat species. Evolutionary constraints on viral host range indicate that host species barriers may trump the intrinsic mutability of RNA viruses in determining the fate of emerging host-virus interactions.


Journal of General Virology | 2010

Host immunity to repeated rabies virus infection in big brown bats

Amy S. Turmelle; Felix R. Jackson; Douglas B. Green; Gary F. McCracken; Charles E. Rupprecht

Bats are natural reservoirs for the majority of lyssaviruses globally, and are unique among mammals in having exceptional sociality and longevity. Given these facets, and the recognized status of bats as reservoirs for rabies viruses (RABVs) in the Americas, individual bats may experience repeated exposure to RABV during their lifetime. Nevertheless, little information exists with regard to within-host infection dynamics and the role of immunological memory that may result from abortive RABV infection in bats. In this study, a cohort of big brown bats (Eptesicus fuscus) was infected intramuscularly in the left and right masseter muscles with varying doses [10−0.1–104.9 median mouse intracerebral lethal doses (MICLD50)] of an E. fuscus RABV variant isolated from a naturally infected big brown bat. Surviving bats were infected a second time at 175 days post-(primary) infection with a dose (103.9–104.9 MICLD50) of the same RABV variant. Surviving bats were infected a third time at either 175 or 305 days post-(secondary) infection with a dose (104.9 MICLD50) of the same RABV variant. When correcting for dose, similar mortality was observed following primary and secondary infection, but reduced mortality was observed following the third and last RABV challenge, despite infection with a high viral dose. Inducible RABV-neutralizing antibody titres post-infection were ephemeral among infected individuals, and dropped below levels of detection in several bats between subsequent infections. These results suggest that long-term repeated infection of bats may confer significant immunological memory and reduced susceptibility to RABV infection.


Ecohealth | 2009

Correlates of Viral Richness in Bats (Order Chiroptera)

Amy S. Turmelle; Kevin J. Olival

Historic and contemporary host ecology and evolutionary dynamics have profound impacts on viral diversity, virulence, and associated disease emergence. Bats have been recognized as reservoirs for several emerging viral pathogens, and are unique among mammals in their vagility, potential for long-distance dispersal, and often very large, colonial populations. We investigate the relative influences of host ecology and population genetic structure for predictions of viral richness in relevant reservoir species. We test the hypothesis that host geographic range area, distribution, population genetic structure, migratory behavior, International Union for Conservation of Nature and Natural Resources (IUCN) threat status, body mass, and colony size, are associated with known viral richness in bats. We analyze host traits and viral richness in a generalized linear regression model framework, and include a correction for sampling effort and phylogeny. We find evidence that sampling effort, IUCN status, and population genetic structure correlate with observed viral species richness in bats, and that these associations are independent of phylogeny. This study is an important first step in understanding the mechanisms that promote viral richness in reservoir species, and may aid in predicting the emergence of viral zoonoses from bats.


Emerging Infectious Diseases | 2011

Bartonella spp. in Bats, Guatemala

Ying Bai; Michael Y. Kosoy; Sergio Recuenco; Danilo Alvarez; David Moran; Amy S. Turmelle; James A. Ellison; Daniel L. Garcia; Alejandra Estevez; Kim A. Lindblade; Charles E. Rupprecht

To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat–associated Bartonella spp. may cause undiagnosed illnesses in humans.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2009

Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis)

Louise C. Allen; Amy S. Turmelle; Mary T. Mendonça; Kristen J. Navara; Thomas H. Kunz; Gary F. McCracken

Bats have recently been implicated as reservoirs of important emerging diseases. However, few studies have examined immune responses in bats, and even fewer have evaluated these responses in an ecological context. We examined aspects of both innate and adaptive immune response in adult female Brazilian free-tailed bats (Tadarida brasiliensis) at four maternity roosts (two natural caves and two human-made bridges) in south-central Texas. Immune measurements included in vitro bactericidal ability of whole blood and in vivo T cell mediated response to mitogenic challenge. Bactericidal activity in T. brasiliensis varied with roosting ecology, but appears to be sensitive to colony-level effects. Blood from females living at one cave had significantly lower bactericidal ability than blood from females at three other sites. T cell mediated response in this species was associated with variation in roost ecology, with females from two caves having greater responses than females from two bridges. T cell mediated response and bactericidal activity were negatively correlated with one another within individuals that were tested for both. Variation in immunological response of T. brasiliensis is important for understanding the influence of the environment on the frequency and distribution of immunologically competent individuals and for understanding disease-host dynamics in this and other colonial species.


Vector-borne and Zoonotic Diseases | 2010

Ecology of Rabies Virus Exposure in Colonies of Brazilian Free-Tailed Bats (Tadarida brasiliensis) at Natural and Man-Made Roosts in Texas

Amy S. Turmelle; Louise C. Allen; Felix R. Jackson; Thomas H. Kunz; Charles E. Rupprecht; Gary F. McCracken

Previous studies have investigated rabies virus (RABV) epizootiology in Brazilian free-tailed bats (Tadarida brasiliensis) in natural cave roosts. However, little is known about geographic variation in RABV exposure, or if the use of man-made roosts by this species affects enzootic RABV infection dynamics within colonies. We sampled rabies viral neutralizing antibodies in bats at three bridge and three cave roosts at multiple time points during the reproductive season to investigate temporal and roost variation in RABV exposure. We report seropositive bats in all age and sex classes with minimal geographic variation in RABV seroprevalence among Brazilian free-tailed bat colonies in south-central Texas. While roost type was not a significant predictor of RABV seroprevalence, it was significantly associated with seasonal fluctuations, suggesting patterns of exposure that differ between roosts. Temporal patterns suggest increased RABV seroprevalence after parturition in cave colonies, potentially related to an influx of susceptible young, in contrast to more uniform seroprevalence in bridge colonies. This study highlights the importance of life history and roost ecology in understanding patterns of RABV seroprevalence in colonies of the Brazilian free-tailed bat.


Journal of Wildlife Diseases | 2008

EXPERIMENTAL RABIES VIRUS INFECTION OF BIG BROWN BATS (EPTESICUS FUSCUS)

Felix R. Jackson; Amy S. Turmelle; David M. Farino; Richard Franka; Gary F. McCracken; Charles E. Rupprecht

A captive colony of adult Big Brown Bats (Eptesicus fuscus) was experimentally infected with a rabies virus (RABV) variant isolated from the salivary glands of a naturally infected Big Brown Bat and passaged once through murine neuroblastoma cell culture. Bats were divided into 11 groups, which were composed of one to three noninfected and one to three infected individuals each. Twenty of 38 animals were infected intramuscularly into both left and right masseter muscles; they received a total of 103.2 median mouse intracerebral lethal dose (MICLD50) of Big Brown Bat RABV variant. Experimental outcome after viral exposure was followed in the bats for 140 days postinoculation (PI). Of 20 infected bats, 16 developed clinical rabies, and the mean incubation period was 24 days (range: 13–52 days). Three infected bats never seroconverted and succumbed early to infection (13 days). Four infected bats that survived until the end of the experiment without any signs of disease maintained detectable antibody titers until the third month PI, peaking between days 13 and 43, and consequent drop-off below the threshold for detection occurred by day 140. Limited excretion of virus in saliva of infected bats during the clinical course of disease was observed in two individuals on days 13 and 15 PI (<24 hr prior to onset of clinical illness). No bat-to-bat transmission of RABV to noninfected bats was detected.


Vector-borne and Zoonotic Diseases | 2012

Trends in National Surveillance Data for Bat Rabies in the United States: 2001–2009

Kelly Patyk; Amy S. Turmelle; Jesse D. Blanton; Charles E. Rupprecht

Rabies remains an important public health concern in the United States, with most human cases associated with bat rabies virus variants. Cases of rabies virus (RV) infection in bats are widely distributed across the continental United States and elsewhere in the Americas. In this retrospective study, data on bats submitted to state laboratories for RV diagnosis between 2001 and 2009 were analyzed to investigate epidemiological trends in the United States. Season, region, and roosting habits were the primary risk factors of interest. During the study interval, more than 205,439 bats were submitted for RV diagnosis, and 6.7% of these bats were rabid. Increased odds of a submitted bat being rabid were associated with species that exhibit inconspicuous roosting habits, bats originating in the Southwest, and bats submitted for diagnosis during the fall. Periodic analysis of zoonotic disease surveillance is recommended to detect changes in trends regarding geographic distribution, seasonal fluctuations, and host associations; this is particularly necessary, as existing trends may be influenced by climate change or other emerging factors.


Journal of Wildlife Diseases | 2011

RABIES PREVALENCE IN MIGRATORY TREE-BATS IN ALBERTA AND THE INFLUENCE OF ROOSTING ECOLOGY AND SAMPLING METHOD ON REPORTED PREVALENCE OF RABIES IN BATS

Brandon J. Klug; Amy S. Turmelle; James A. Ellison; Erin F. Baerwald; Robert M. R. Barclay

The migratory tree-roosting hoary bat (Lasiurus cinereus) and silver-haired bat (Lasionycteris noctivagans) are among the bat species with the highest reported prevalence of rabies in North America. However, bats submitted for rabies testing typically have been those that have come in contact with humans or pets. Given the roosting ecology of L. cinereus and L. noctivagans, contact with healthy individuals of these species is expected to be rare, with a bias in contact and submission of infected individuals and thus an overestimation of rabies prevalence. We tested 121 L. cinereus and 96 L. noctivagans specimens, collected during mortality surveys at wind energy facilities in Southern Alberta, Canada in 2007 and 2008, for rabies. None of the L. cinereus (0%) and one L. noctivagans (1%) tested positive for rabies. Prevalence of rabies was significantly lower than previously reported estimates, passive and active, for L. cinereus and L. noctivagans. In a review of the literature including multiple bat species, we found a significant difference in estimates of rabies prevalence based on passive versus active surveillance testing. Furthermore, roosting ecology influenced estimates of rabies prevalence, with significantly higher prevalence among passive surveillance submissions of nonsynanthropic species compared to synanthropic species, a trend not evident in active surveillance reports. We conclude that rabies prevalence in randomly collected L. cinereus and L. noctivagans is low and comparable to active surveillance estimates from other species (≤1%), and that roosting ecology influences estimates of rabies prevalence among bats submitted to public health laboratories in North America.

Collaboration


Dive into the Amy S. Turmelle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix R. Jackson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James A. Ellison

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Louise C. Allen

Winston-Salem State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan V. Kuzmin

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Kim A. Lindblade

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Franka

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge