Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Ellison is active.

Publication


Featured researches published by James A. Ellison.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A distinct lineage of influenza A virus from bats

Suxiang Tong; Yan Li; Pierre Rivailler; Christina Conrardy; Danilo A. Alvarez Castillo; Li-Mei Chen; Sergio Recuenco; James A. Ellison; Charles T. Davis; Ian A. York; Amy S. Turmelle; David Moran; Shannon Rogers; Mang Shi; Ying Tao; Michael R. Weil; Kevin Tang; Lori A. Rowe; Scott Sammons; Xiyan Xu; Michael Frace; Kim A. Lindblade; Nancy J. Cox; Larry J. Anderson; Charles E. Rupprecht; Ruben O. Donis

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Bats are a major natural reservoir for hepaciviruses and pegiviruses

Phenix-Lan Quan; Cadhla Firth; Juliette M. Conte; Simon H. Williams; Carlos Zambrana-Torrelio; Simon J. Anthony; James A. Ellison; Amy T. Gilbert; Ivan V. Kuzmin; Michael Niezgoda; Modupe Osinubi; Sergio Recuenco; Wanda Markotter; Robert F. Breiman; Lems Kalemba; Jean Malekani; Kim A. Lindblade; Melinda K. Rostal; Rafael Ojeda-Flores; Gerardo Suzán; Lora B. Davis; Dianna M. Blau; Albert B. Ogunkoya; Danilo A. Alvarez Castillo; David Moran; Sali Ngam; Dudu Akaibe; Bernard Agwanda; Thomas Briese; Jonathan H. Epstein

Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.


Emerging Infectious Diseases | 2011

Bartonella spp. in Bats, Guatemala

Ying Bai; Michael Y. Kosoy; Sergio Recuenco; Danilo Alvarez; David Moran; Amy S. Turmelle; James A. Ellison; Daniel L. Garcia; Alejandra Estevez; Kim A. Lindblade; Charles E. Rupprecht

To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat–associated Bartonella spp. may cause undiagnosed illnesses in humans.


Journal of General Virology | 2013

Discovery of diverse polyomaviruses in bats and the evolutionary history of the Polyomaviridae

Ying Tao; Mang Shi; Christina Conrardy; Ivan V. Kuzmin; Sergio Recuenco; Bernard Agwanda; Danilo Alvarez; James A. Ellison; Amy T. Gilbert; David Moran; Michael Niezgoda; Kim A. Lindblade; Edward C. Holmes; Robert F. Breiman; Charles E. Rupprecht; Suxiang Tong

Polyomaviruses (PyVs) have been identified in a wide range of avian and mammalian species. However, little is known about their occurrence, genetic diversity and evolutionary history in bats, even though bats are important reservoirs for many emerging viral pathogens. This study screened 380 specimens from 35 bat species from Kenya and Guatemala for the presence of PyVs by semi-nested pan-PyV PCR assays. PyV DNA was detected in 24 of the 380 bat specimens. Phylogenetic analysis revealed that the bat PyV sequences formed 12 distinct lineages. Full-genome sequences were obtained for seven representative lineages and possessed similar genomic features to known PyVs. Strikingly, this evolutionary analysis revealed that the bat PyVs were paraphyletic, suggestive of multiple species jumps between bats and other mammalian species, such that the theory of virus-host co-divergence for mammalian PyVs as a whole could be rejected. In addition, evidence was found for strong heterogeneity in evolutionary rate and potential recombination in a number of PyV complete genomes, which complicates both phylogenetic analysis and virus classification. In summary, this study revealed that bats are important reservoirs of PyVs and that these viruses have a complex evolutionary history.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Host–rabies virus protein–protein interactions as druggable antiviral targets

Usha Lingappa; Xianfu Wu; Amanda Macieik; Shao Feng Yu; Andy Atuegbu; Michael Corpuz; Jean Francis; Christine Nichols; Alfredo Calayag; Hong Shi; James A. Ellison; Emma Harrell; Vinod Asundi; Jaisri R. Lingappa; M. Dharma Prasad; W. Ian Lipkin; Debendranath Dey; Clarence R. Hurt; Vishwanath R. Lingappa; William Hansen; Charles E. Rupprecht

We present an unconventional approach to antiviral drug discovery, which is used to identify potent small molecules against rabies virus. First, we conceptualized viral capsid assembly as occurring via a host-catalyzed biochemical pathway, in contrast to the classical view of capsid formation by self-assembly. This suggested opportunities for antiviral intervention by targeting previously unappreciated catalytic host proteins, which were pursued. Second, we hypothesized these host proteins to be components of heterogeneous, labile, and dynamic multi-subunit assembly machines, not easily isolated by specific target protein-focused methods. This suggested the need to identify active compounds before knowing the precise protein target. A cell-free translation-based small molecule screen was established to recreate the hypothesized interactions involving newly synthesized capsid proteins as host assembly machine substrates. Hits from the screen were validated by efficacy against infectious rabies virus in mammalian cell culture. Used as affinity ligands, advanced analogs were shown to bind a set of proteins that effectively reconstituted drug sensitivity in the cell-free screen and included a small but discrete subfraction of cellular ATP-binding cassette family E1 (ABCE1), a host protein previously found essential for HIV capsid formation. Taken together, these studies advance an alternate view of capsid formation (as a host-catalyzed biochemical pathway), a different paradigm for drug discovery (whole pathway screening without knowledge of the target), and suggest the existence of labile assembly machines that can be rendered accessible as next-generation drug targets by the means described.


PLOS ONE | 2013

The Phylogeography and Spatiotemporal Spread of South-Central Skunk Rabies Virus

Natalia Kuzmina; Philippe Lemey; Ivan V. Kuzmin; Bonny C. Mayes; James A. Ellison; Lillian A. Orciari; Dillon Hightower; Steven T. Taylor; Charles E. Rupprecht

The south-central skunk rabies virus (SCSK) is the most broadly distributed terrestrial viral lineage in North America. Skunk rabies has not been efficiently targeted by oral vaccination campaigns and represents a natural system of pathogen invasion, yielding insights to rabies emergence. In the present study we reconstructed spatiotemporal spread of SCSK in the whole territory of its circulation using a combination of Bayesian methods. The analysis based on 241 glycoprotein gene sequences demonstrated that SCSK is much more divergent phylogenetically than was appreciated previously. According to our analyses the SCSK originated in the territory of Texas ~170 years ago, and spread geographically during the following decades. The wavefront velocity in the northward direction was significantly greater than in the eastward and westward directions. Rivers (except the Mississippi River and Rio Grande River) did not constitute significant barriers for epizootic spread, in contrast to deserts and mountains. The mean dispersal rate of skunk rabies was lower than that of the raccoon and fox rabies. Viral lineages circulate in their areas with limited evidence of geographic spread during decades. However, spatiotemporal reconstruction shows that after a long period of stability the dispersal rate and wavefront velocity of SCSK are increasing. Our results indicate that there is a need to develop control measures for SCSK, and suggest how such measure can be implemented most efficiently. Our approach can be extrapolated to other rabies reservoirs and used as a tool for investigation of epizootic patterns and planning interventions towards disease elimination.


Travel Medicine and Infectious Disease | 2012

The other rabies viruses: The emergence and importance of lyssaviruses from bats and other vertebrates

Charles H. Calisher; James A. Ellison

Summary The recognition that viruses related to rabies virus cause rabies in humans has stimulated research into the relationships, geographic distribution and natural histories of these viruses. This paper reviews what is known of these fascinating viruses and the complexity of prevention and treatment of the disease they cause.


Morbidity and Mortality Weekly Report | 2016

Human Rabies — Missouri, 2014

Pratt Pd; Henschel K; Turabelidze G; Grim A; James A. Ellison; Lillian A. Orciari; Pamela A. Yager; Richard Franka; Wu X; Ma X; Ashutosh Wadhwa; Todd G. Smith; Brett W. Petersen; Shiferaw M

On September 18, 2014, the Missouri Department of Health and Senior Services (MDHSS) was notified of a suspected rabies case in a Missouri resident. The patient, a man aged 52 years, lived in a rural, deeply wooded area, and bat sightings in and around his home were anecdotally reported. Exposure to bats poses a risk for rabies. After two emergency department visits for severe neck pain, paresthesia in the left arm, upper body tremors, and anxiety, he was hospitalized on September 13 for encephalitis of unknown etiology. On September 24, he received a diagnosis of rabies and on September 26, he died. Genetic sequencing tests confirmed infection with a rabies virus variant associated with tricolored bats. Health care providers need to maintain a high index of clinical suspicion for rabies in patients who have unexplained, rapidly progressive encephalitis, and adhere to recommended infection control practices when examining and treating patients with suspected infectious diseases.


Vaccine | 2014

Oral vaccination and protection of striped skunks (Mephitis mephitis) against rabies using ONRAB

L.J. Brown; Rick Rosatte; Christine Fehlner-Gardiner; James A. Ellison; Felix R. Jackson; P. Bachmann; J.S. Taylor; Richard Franka; D. Donovan

Skunks are one of the most important rabies vector species in North America due to their wide geographic distribution, high susceptibility to the rabies virus, and tendency to inhabit areas around human dwellings and domestic animals. Oral vaccination is a cost-effective, socially acceptable technique often used to control rabies in terrestrial wildlife; however, control of rabies in skunks has proven especially challenging due to the lack of a vaccine effective by the oral route in this species. In this study, we examined the antibody response of captive striped skunks (Mephitis mephitis) to ONRAB(®) and tested the protection afforded by the vaccine against rabies virus. Thirty-one skunks were each offered one ONRAB(®) vaccine bait, 25 skunks were administered ONRAB(®) via direct instillation into the oral cavity (DIOC) and ten controls received no vaccine. A blood sample was collected from controls and vaccinates 6 weeks prior to treatment, and then 5 and 7 weeks post-vaccination (PV). A competitive ELISA was used to detect rabies antibody (RAb). Pre-vaccination sera for all skunks, and sera for all controls throughout the serology study, were negative for RAb. Fifty-eight percent (18/31) of skunks in the bait group and 100% (25/25) of skunks that received ONRAB(®) DIOC had detectable RAb by 7 week PV. All 10 controls succumbed to experimental rabies infection. In the group of skunks administered ONRAB(®) DIOC, 100% (23/23) survived challenge 247 days PV. Survival of skunks presented ONRAB(®) baits was 81% (25/31). In the bait group, all 18 skunks that had detectable RAb by 7 week PV survived challenge. Seven additional skunks without detectable RAb prior to week 7 PV also survived. Lack of any remarkable pathology in study animals, together with positive serology and challenge results, supports that ONRAB(®) is a safe and effective oral rabies vaccine for use in skunks.


Vaccine | 2014

Oral vaccination and protection of red foxes (Vulpes vulpes) against rabies using ONRAB®, an adenovirus-rabies recombinant vaccine

L.J. Brown; Rick Rosatte; Christine Fehlner-Gardiner; P. Bachmann; James A. Ellison; Felix R. Jackson; J.S. Taylor; C. Davies; Dennis Donovan

Twenty-seven red foxes (Vulpes vulpes) were each offered a bait containing ONRAB, a recombinant oral rabies vaccine that uses a human adenovirus vector to express the immunogenic rabies virus glycoprotein; 10 controls received no vaccine baits. Serum samples collected from all foxes before treatment, and each week post-treatment for 16 weeks, were tested for the presence of rabies virus neutralizing antibody (RVNA). In the bait group, a fox was considered a responder to vaccination if serum samples from 3 or more consecutive weeks had RVNA ≥0.5 IU/ml. Using this criterion, 79% of adult foxes (11/14) and 46% of juveniles (6/13) responded to vaccination with ONRAB. Serum RVNA of adults first tested positive (≥0.5 IU/ml) between weeks 1 and 3, about 4 weeks earlier than in juveniles. Adults also responded with higher levels of RVNA and these levels were maintained longer. Serum samples from juveniles tested positive for 1-4 consecutive weeks; in adults the range was 2-15 weeks, with almost half of adults maintaining titres above 0.5 IU/ml for 9 or more consecutive weeks. Based on the kinetics of the antibody response to ONRAB, the best time to sample sera of wild adult foxes for evidence of vaccination is 7-11 weeks following bait distribution. Thirty-four foxes (25 ONRAB, 9 controls) were challenged with vulpine street virus 547 days post-vaccination. All controls developed rabies whereas eight of 13 adult vaccinates (62%) and four of 12 juvenile vaccinates (33%) survived. All foxes classed as non-responders to vaccination developed rabies. Of foxes considered responders to vaccination, 80% of adults (8/10) and 67% of juveniles (4/6) survived challenge. The duration of immunity conferred to foxes would appear adequate for bi-annual and annual bait distribution schedules as vaccinates were challenged 1.5 years post-vaccination.

Collaboration


Dive into the James A. Ellison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lillian A. Orciari

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Natalia Kuzmina

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ivan V. Kuzmin

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Michael Niezgoda

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Richard Franka

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Amy T. Gilbert

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Kim A. Lindblade

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Sergio Recuenco

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Todd G. Smith

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge