Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan V. Kuzmin is active.

Publication


Featured researches published by Ivan V. Kuzmin.


Emerging Infectious Diseases | 2004

Nipah virus encephalitis reemergence, Bangladesh

Vincent P. Hsu; Mohammed Jahangir Hossain; Umesh D. Parashar; Mohammed Monsur Ali; Thomas G. Ksiazek; Ivan V. Kuzmin; Michael Niezgoda; Charles E. Rupprecht; Joseph S. Bresee; Robert F. Breiman

Two Nipah virus encephalitis outbreaks in Bangladesh may be associated with person-to-person transmission.


Science | 2010

Host Phylogeny Constrains Cross-Species Emergence and Establishment of Rabies Virus in Bats

Daniel G. Streicker; Amy S. Turmelle; Maarten J. Vonhof; Ivan V. Kuzmin; Gary F. McCracken; Charles E. Rupprecht

Threats to and from Bats Bats appear to be able to host an assortment of alarming pathogens, which, if they do not extirpate the bats, have implications for human health (see the Perspective by Daszak). For example, exposure to bats is the main source of human rabies in the Americas. But rabies is not generally transmitted among people; humans are a dead end for the virus. Streicker et al. (p. 676, see the cover) show that rabies virus lineages tend to be specific for bat lineages. It seems that although rabies viruses have the potential for rapid evolution, this property alone is not enough to overcome genetic barriers, which inhibit the onward transmission of rabies virus into a new species. White-nose syndrome, an exotic fungal infection of bats, has, over the past 3 years, spread from upstate New York to West Virginia, killing on average 70% of the animals in a hibernating colony. The infection makes bats restless over winter when they should be dormant, which makes them exhaust their fat reserves, resulting in the death of over a million bats. Frick et al. (p. 679) have analyzed population data collected on bats in the northeastern United States for the past 30 years and show that, mainly owing to white-nose syndrome, the once abundant little brown bat is heading for regional extinction in the next 16 years or so. This scale of loss of an insectivorous mammal is expected to have repercussions for ecosystem integrity and for the economic costs of agricultural pest control. Rabies virus’ innate capacity to replicate and adapt cannot overcome host genetic barriers to cross-species transfer. For RNA viruses, rapid viral evolution and the biological similarity of closely related host species have been proposed as key determinants of the occurrence and long-term outcome of cross-species transmission. Using a data set of hundreds of rabies viruses sampled from 23 North American bat species, we present a general framework to quantify per capita rates of cross-species transmission and reconstruct historical patterns of viral establishment in new host species using molecular sequence data. These estimates demonstrate diminishing frequencies of both cross-species transmission and host shifts with increasing phylogenetic distance between bat species. Evolutionary constraints on viral host range indicate that host species barriers may trump the intrinsic mutability of RNA viruses in determining the fate of emerging host-virus interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Bats are a major natural reservoir for hepaciviruses and pegiviruses

Phenix-Lan Quan; Cadhla Firth; Juliette M. Conte; Simon H. Williams; Carlos Zambrana-Torrelio; Simon J. Anthony; James A. Ellison; Amy T. Gilbert; Ivan V. Kuzmin; Michael Niezgoda; Modupe Osinubi; Sergio Recuenco; Wanda Markotter; Robert F. Breiman; Lems Kalemba; Jean Malekani; Kim A. Lindblade; Melinda K. Rostal; Rafael Ojeda-Flores; Gerardo Suzán; Lora B. Davis; Dianna M. Blau; Albert B. Ogunkoya; Danilo A. Alvarez Castillo; David Moran; Sali Ngam; Dudu Akaibe; Bernard Agwanda; Thomas Briese; Jonathan H. Epstein

Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.


Virus Research | 2003

Bat lyssaviruses (Aravan and Khujand) from Central Asia: Phylogenetic relationships according to N, P and G gene sequences

Ivan V. Kuzmin; Lillian A. Orciari; Yohko T. Arai; Jean S. Smith; Cathleen A. Hanlon; Yosuke Kameoka; Charles E. Rupprecht

Bat lyssaviruses Aravan and Khujand were isolated in southern Kyrgyzstan in 1991 and in northern Tajikistan in 2001, respectively. Preliminary studies with anti-nucleocapsid monoclonal antibodies suggested that the viruses were distinct from other lyssavirus serotypes. These data were supported by sequencing of the N gene of Aravan virus. In the present study, we sequenced the entire N, P and G genes of both Aravan and Khujand viruses and compared them with respective sequences of other lyssaviruses available from GenBank. The results suggested that each virus should be considered as a newly recognized genotype according to the current approaches for genotype definition (amount of nucleotide identity of the N gene and bootstrap support of joining to certain phylogenetic groups). Use of different phylogenetic methods and comparison of different parts of the genomes generally suggested that Khujand virus was mainly related to genotype 6, while Aravan virus, on the one hand, was related to Khujand virus, and, on the other hand, demonstrated moderate similarity to genotypes 4, 5 and 6. The potential significance of these new lyssaviruses for veterinary and public health should not be underestimated.


Virus Research | 2010

Shimoni bat virus, a new representative of the Lyssavirus genus.

Ivan V. Kuzmin; Anne E. Mayer; Michael Niezgoda; Wanda Markotter; Bernard Agwanda; Robert F. Breiman; Charles E. Rupprecht

During 2009, 616 bats representing at least 22 species were collected from 10 locations throughout Kenya. A new lyssavirus, named Shimoni bat virus (SHIBV), was isolated from the brain of a dead Commersons leaf-nosed bat (Hipposideros commersoni), found in a cave in the coastal region of Kenya. Genetic distances and phylogenetic reconstructions, implemented for each gene and for the concatenated alignment of all five structural genes (N, P, M, G and L), demonstrated that SHIBV cannot be identified with any of the existing species, but rather should be considered an independent species within phylogroup II of the Lyssavirus genus, most similar to Lagos bat virus (LBV). Antigenic reaction patterns with anti-nucleocapsid monoclonal antibodies corroborated these distinctions. In addition, new data on the diversity of LBV suggests that this species may be subdivided quantitatively into three separate genotypes. However, the identity values alone are not considered sufficient criteria for demarcation of new species within LBV.


Emerging Infectious Diseases | 2009

Detection of Novel SARS-like and Other Coronaviruses in Bats from Kenya

Suxiang Tong; Christina Conrardy; Susan Ruone; Ivan V. Kuzmin; Xiling Guo; Ying Tao; Michael Niezgoda; Lia M. Haynes; Bernard Agwanda; Robert F. Breiman; Larry J. Anderson; Charles E. Rupprecht

Diverse coronaviruses have been identified in bats from several continents but not from Africa. We identified group 1 and 2 coronaviruses in bats in Kenya, including SARS-related coronaviruses. The sequence diversity suggests that bats are well-established reservoirs for and likely sources of coronaviruses for many species, including humans.


Journal of Wildlife Diseases | 2004

MOLECULAR EPIDEMIOLOGY OF TERRESTRIAL RABIES IN THE FORMER SOVIET UNION

Ivan V. Kuzmin; Alexandr D. Botvinkin; Lorraine M. McElhinney; Jean S. Smith; Lillian A. Orciari; Gareth Hughes; Anthony R. Fooks; Charles E. Rupprecht

Fifty-five rabies virus isolates originating from different regions of the former Soviet Union (FSU) were compared with isolates originating from Eurasia, Africa, and North America according to complete or partial nucleoprotein (N) gene sequences. The FSU isolates formed five distinct groups. Group A represented viruses originating from the Arctic, which were similar to viruses from Alaska and Canada. Group B consisted of “Arctic-like” viruses, originating from the south of East Siberia and the Far East. Group C consisted of viruses circulating in the steppe and forest-steppe territories from the European part of Russia to Tuva and in Kazakhstan. These three phylogenetic groups were clearly different from the European cluster. Viruses of group D circulate near the western border of Russia. Their phylogenetic position is intermediate between group C and the European cluster. Group E consisted of viruses originating from the northwestern part of Russia and comprised a “northeastern Europe” group described earlier from the Baltic region. According to surveillance data, a specific host can be defined clearly only for group A (arctic fox; Alopex lagopus) and for the Far Eastern part of the group B distribution area (raccoon dog; Nyctereutes procyonoides). For other territories and rabies virus variants, the red fox (Vulpes vulpes) is the main virus reservoir. However, the steppe fox (Vulpes corsac), wolf (Canis lupus), and raccoon dog are also involved in virus circulation, depending on host population density. These molecular data, joined with surveillance information, demonstrate that the current fox rabies epizootic in the territory of the FSU developed independently of central and western Europe. No evidence of positive selection was found in the N genes of the isolates. In the glycoprotein gene, evidence of positive selection was strongly suggested in codons 156, 160, and 183. At these sites, no link between amino acid substitutions and phylogenetic placement or specific host species was detected.


Journal of Clinical Microbiology | 2008

Lagos Bat Virus in Kenya

Ivan V. Kuzmin; Michael Niezgoda; Richard Franka; Bernard Agwanda; Wanda Markotter; Janet C. Beagley; Olga Yu Urazova; Robert F. Breiman; Charles E. Rupprecht

ABSTRACT During lyssavirus surveillance, 1,221 bats of at least 30 species were collected from 25 locations in Kenya. One isolate of Lagos bat virus (LBV) was obtained from a dead Eidolon helvum fruit bat. The virus was most similar phylogenetically to LBV isolates from Senegal (1985) and from France (imported from Togo or Egypt; 1999), sharing with these viruses 100% nucleoprotein identity and 99.8 to 100% glycoprotein identity. This genome conservancy across space and time suggests that LBV is well adapted to its natural host species and that populations of reservoir hosts in eastern and western Africa have sufficient interactions to share pathogens. High virus concentrations, in addition to being detected in the brain, were detected in the salivary glands and tongue and in an oral swab, suggesting that LBV is transmitted in the saliva. In other extraneural organs, the virus was generally associated with innervations and ganglia. The presence of infectious virus in the reproductive tract and in a vaginal swab implies an alternative opportunity for transmission. The isolate was pathogenic for laboratory mice by the intracerebral and intramuscular routes. Serologic screening demonstrated the presence of LBV-neutralizing antibodies in E. helvum and Rousettus aegyptiacus fruit bats. In different colonies the seroprevalence ranged from 40 to 67% and 29 to 46% for E. helvum and R. aegyptiacus, respectively. Nested reverse transcription-PCR did not reveal the presence of viral RNA in oral swabs of bats in the absence of brain infection. Several large bat roosts were identified in areas of dense human populations, raising public health concerns for the potential of lyssavirus infection.


PLOS Pathogens | 2012

Molecular Inferences Suggest Multiple Host Shifts of Rabies Viruses from Bats to Mesocarnivores in Arizona during 2001–2009

Ivan V. Kuzmin; Mang Shi; Lillian A. Orciari; Pamela A. Yager; Andres Velasco-Villa; Natalia Kuzmina; Daniel G. Streicker; David L. Bergman; Charles E. Rupprecht

In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001–2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches.


Emerging Infectious Diseases | 2004

Rabies in Endangered Ethiopian Wolves

Deborah A. Randall; Stuart D. Williams; Ivan V. Kuzmin; Charles E. Rupprecht; Lucy A. Tallents; Zelealem Tefera; Kifle Argaw; Fekadu Shiferaw; Darryn L. Knobel; Claudio Sillero-Zubiri; M. Karen Laurenson

With rabies emerging as a particular threat to wild canids, we report on a rabies outbreak in a subpopulation of endangered Ethiopian wolves in the Bale Mountains, Ethiopia, in 2003 and 2004. Parenteral vaccination of wolves was used to manage the outbreak.

Collaboration


Dive into the Ivan V. Kuzmin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Niezgoda

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lillian A. Orciari

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Richard Franka

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James A. Ellison

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Natalia Kuzmina

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge