Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where An Jacobs is active.

Publication


Featured researches published by An Jacobs.


American Journal of Human Genetics | 2003

Mutations in the Small GTP-ase Late Endosomal Protein RAB7 Cause Charcot-Marie-Tooth Type 2B Neuropathy

Kristien Verhoeven; Katrien Coen; Nathalie Verpoorten; Michaela Auer-Grumbach; Jennifer M. Kwon; David Fitzpatrick; Eric Schmedding; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Klaus Wagner; Hans-Peter Hartung; Vincent Timmerman

Charcot-Marie-Tooth type 2B (CMT2B) is clinically characterized by marked distal muscle weakness and wasting and a high frequency of foot ulcers, infections, and amputations of the toes because of recurrent infections. CMT2B maps to chromosome 3q13-q22. We refined the CMT2B locus to a 2.5-cM region and report two missense mutations (Leu129Phe and Val162Met) in the small GTP-ase late endosomal protein RAB7 which causes the CMT2B phenotype in three extended families and in three patients with a positive family history. The alignment of RAB7 orthologs shows that both missense mutations target highly conserved amino acid residues. RAB7 is ubiquitously expressed, and we found expression in sensory and motor neurons.


Nature Genetics | 2004

Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy

Joy Irobi; Katrien Van Impe; Pavel Seeman; Albena Jordanova; Ines Dierick; Nathalie Verpoorten; Andrej Michalik; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Krist’l Vennekens; Radim Mazanec; Ivailo Tournev; David Hilton-Jones; Kevin Talbot; Ivo Kremensky; Ludo Van Den Bosch; Wim Robberecht; Joël Vandekerckhove; Christine Van Broeckhoven; Jan Gettemans; Vincent Timmerman

Distal hereditary motor neuropathies are pure motor disorders of the peripheral nervous system resulting in severe atrophy and wasting of distal limb muscles. In two pedigrees with distal hereditary motor neuropathy type II linked to chromosome 12q24.3, we identified the same mutation (K141N) in small heat-shock 22-kDa protein 8 (encoded by HSPB8; also called HSP22). We found a second mutation (K141E) in two smaller families. Both mutations target the same amino acid, which is essential to the structural and functional integrity of the small heat-shock protein αA-crystallin. This positively charged residue, when mutated in other small heat-shock proteins, results in various human disorders. Coimmunoprecipitation experiments showed greater binding of both HSPB8 mutants to the interacting partner HSPB1. Expression of mutant HSPB8 in cultured cells promoted formation of intracellular aggregates. Our findings provide further evidence that mutations in heat-shock proteins have an important role in neurodegenerative disorders.


Nature Genetics | 2006

Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy

Albena Jordanova; Joy Irobi; Florian P. Thomas; Patrick Van Dijck; Kris Meerschaert; Maarten Dewil; Ines Dierick; An Jacobs; Els De Vriendt; Velina Guergueltcheva; Chitharanjan V Rao; Ivailo Tournev; Francisco de Assis Aquino Gondim; Marc D'Hooghe; Veerle Van Gerwen; Patrick Callaerts; Ludo Van Den Bosch; Jean-Pierre Timmermans; Wim Robberecht; Jan Gettemans; Johan M. Thevelein; Ivo Kremensky; Vincent Timmerman

Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153–156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.


Brain | 2009

Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation

Annelies Rotthier; Jonathan Baets; Els De Vriendt; An Jacobs; Michaela Auer-Grumbach; Nicolas Lévy; Nathalie Bonello-Palot; Sara Sebnem Kilic; Joachim Weis; Andres Nascimento; Marielle Swinkels; Moyo C. Kruyt; Albena Jordanova; Vincent Timmerman

Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis.


American Journal of Human Genetics | 2010

Mutations in the SPTLC2 Subunit of Serine Palmitoyltransferase Cause Hereditary Sensory and Autonomic Neuropathy Type I

Annelies Rotthier; Michaela Auer-Grumbach; Katrien Janssens; Jonathan Baets; Anke Penno; Leonardo Almeida-Souza; Kim van Hoof; An Jacobs; Els De Vriendt; Beate Schlotter-Weigel; Wolfgang N. Löscher; Petr Vondráček; Pavel Seeman; Patrick Van Dijck; Albena Jordanova; Thorsten Hornemann; Vincent Timmerman

Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral neuropathy associated with progressive distal sensory loss and severe ulcerations. Mutations in the first subunit of the enzyme serine palmitoyltransferase (SPT) have been associated with HSAN-I. The SPT enzyme catalyzes the first and rate-limiting step in the de novo sphingolipid synthesis pathway. However, different studies suggest the implication of other genes in the pathology of HSAN-I. Therefore, we screened the two other known subunits of SPT, SPTLC2 and SPTLC3, in a cohort of 78 HSAN patients. No mutations were found in SPTLC3, but we identified three heterozygous missense mutations in the SPTLC2 subunit of SPT in four families presenting with a typical HSAN-I phenotype. We demonstrate that these mutations result in a partial to complete loss of SPT activity in vitro and in vivo. Moreover, they cause the accumulation of the atypical and neurotoxic sphingoid metabolite 1-deoxy-sphinganine. Our findings extend the genetic heterogeneity in HSAN-I and enlarge the group of HSAN neuropathies associated with SPT defects. We further show that HSAN-I is consistently associated with an increased formation of the neurotoxic 1-deoxysphinganine, suggesting a common pathomechanism for HSAN-I.


American Journal of Human Genetics | 2003

Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10

Kristien Verhoeven; Tom Van de Putte; Eva Nelis; An Zwijsen; Nathalie Verpoorten; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Annick Francis; Chantal Ceuterick; Danny Huylebroeck; Vincent Timmerman

Slowed nerve-conduction velocities (NCVs) are a biological endophenotype in the majority of the hereditary motor and sensory neuropathies (HMSN). Here, we identified a family with autosomal dominant segregation of slowed NCVs without the clinical phenotype of HMSN. Peripheral-nerve biopsy showed predominantly thinly myelinated axons. We identified a locus at 8p23 and a Thr109Ile mutation in ARHGEF10, encoding a guanine-nucleotide exchange factor (GEF) for the Rho family of GTPase proteins (RhoGTPases). Rho GEFs are implicated in neural morphogenesis and connectivity and regulate the activity of small RhoGTPases by catalyzing the exchange of bound GDP by GTP. Expression analysis of ARHGEF10, by use of its mouse orthologue Gef10, showed that it is highly expressed in the peripheral nervous system. Our data support a role for ARHGEF10 in developmental myelination of peripheral nerves.


American Journal of Human Genetics | 2003

Dominant Intermediate Charcot-Marie-Tooth Type C Maps to Chromosome 1p34-p35

Albena Jordanova; Florian P. Thomas; Velina Guergueltcheva; Ivailo Tournev; Francisco de Assis Aquino Gondim; Borjana Ishpekova; Els De Vriendt; An Jacobs; Ivan Litvinenko; Neviana Ivanova; Borjan Buzhov; Ivo Kremensky; Vincent Timmerman

Dominant intermediate Charcot-Marie-Tooth (DI-CMT) neuropathy is a genetic and phenotypic variant of classical CMT, characterized by intermediate nerve conduction velocities and histological evidence of both axonal and demyelinating features. We report two unrelated families with intermediate CMT linked to a novel locus on chromosome 1p34-p35 (DI-CMTC). The combined haplotype analysis in both families localized the DI-CMTC gene within a 6.3-cM linkage interval flanked by markers D1S2787 and D1S2830. The functional and positional candidate genes, Syndecan 3 (SDC3), and lysosomal-associated multispanning membrane protein 5 (LAPTM5) were excluded for pathogenic mutations.


Neurology | 2004

SPTLC1 mutation in twin sisters with hereditary sensory neuropathy type I

K Verhoeven; Katrien Coen; E. De Vriendt; An Jacobs; V. Van Gerwen; Iris Smouts; A. Pou-Serradell; J.-J. Martin; Vincent Timmerman; P. De Jonghe

Hereditary sensory neuropathy type I (HSN I) is an autosomal dominant ulceromutilating disorder of the peripheral nervous system characterized by progressive sensory loss. HSN I locus maps to chromosome 9q22.1-22.3 and is caused by mutations in the gene coding for serine palmitoyltransferase long-chain base subunit 1 (SPTLC1). A novel missense mutation in exon 13 of the SPTLC1 gene (c.1160G→C; p.G387A) in twin sisters with a severe HSN I phenotype is reported.


Neuromuscular Disorders | 2006

Novel frameshift and splice site mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) associated with hereditary sensory neuropathy type IV

Nathalie Verpoorten; Kristl G. Claeys; Liesbet Deprez; An Jacobs; Veerle Van Gerwen; Lieven Lagae; W.F.M. Arts; Linda De Meirleir; Kathelijn Keymolen; Chantal Ceuterick-de Groote; Vincent Timmerman; Eva Nelis

Congenital insensitivity to pain with anhidrosis or hereditary sensory and autonomic neuropathy type IV (HSAN IV) is the first human genetic disorder implicated in the neurotrophin signal transduction pathway. HSAN IV is characterized by absence of reaction to noxious stimuli, recurrent episodes of fever, anhidrosis, self-mutilating behavior and often mental retardation. Mutations in the neurotrophic tyrosine kinase, receptor, type 1 (NTRK1) are associated with this disorder. Here we report four homozygous mutations, two frameshift (p.Gln626fsX6 and p.Gly181fsX58), one missense (p.Arg761Trp) and one splice site (c.359+5G>T) mutation in four HSAN IV patients. The splice site mutation caused skipping of exons 2 and 3 in patients mRNA resulting in an in-frame deletion of the second leucine-rich motif. NTRK1 mutations are only rarely reported in the European population. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with HSAN IV.


Molecular and Cellular Neuroscience | 2005

Synaptopodin and 4 novel genes identified in primary sensory neurons.

Nathalie Verpoorten; Kristien Verhoeven; Stefan Weckx; An Jacobs; Sally Serneels; Jurgen Del Favero; Chantal Ceuterick; Dirk R. Van Bockstaele; Zwi N. Berneman; Ludo Van Den Bosch; Wim Robberecht; Lucilla Nobbio; Angelo Schenone; Eric Dessaud; Odile deLapeyrière; Danny Huylebroeck; An Zwijsen; Vincent Timmerman

We performed differential gene expression profiling in the peripheral nervous system by comparing the transcriptome of sensory neurons with the transcriptome of lower motor neurons. Using suppression subtractive cDNA hybridization, we identified 5 anonymous transcripts with a predominant expression in sensory neurons. We determined the gene structures and predicted the functional protein domains. The 4930579P15Rik gene encodes for a novel inhibitor of protein phosphatase-1 and 9030217H17Rik was found to be the mouse gene synaptopodin. We performed in situ hybridization for all genes in mouse embryos, and found expression predominantly in the primary class of sensory neurons. Expression of 4930579P15Rik and synaptopodin was restricted to craniospinal sensory ganglia. Neither synaptopodin, nor any known family member of 4930579P15Rik, has ever been described in sensory neurons. The identification of protein domains and expression patterns allows further functional analysis of these novel genes in relation to the development and biology of sensory neurons.

Collaboration


Dive into the An Jacobs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludo Van Den Bosch

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Robberecht

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

An Zwijsen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge