Veerle Van Gerwen
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veerle Van Gerwen.
American Journal of Human Genetics | 2003
Kristien Verhoeven; Katrien Coen; Nathalie Verpoorten; Michaela Auer-Grumbach; Jennifer M. Kwon; David Fitzpatrick; Eric Schmedding; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Klaus Wagner; Hans-Peter Hartung; Vincent Timmerman
Charcot-Marie-Tooth type 2B (CMT2B) is clinically characterized by marked distal muscle weakness and wasting and a high frequency of foot ulcers, infections, and amputations of the toes because of recurrent infections. CMT2B maps to chromosome 3q13-q22. We refined the CMT2B locus to a 2.5-cM region and report two missense mutations (Leu129Phe and Val162Met) in the small GTP-ase late endosomal protein RAB7 which causes the CMT2B phenotype in three extended families and in three patients with a positive family history. The alignment of RAB7 orthologs shows that both missense mutations target highly conserved amino acid residues. RAB7 is ubiquitously expressed, and we found expression in sensory and motor neurons.
Nature Genetics | 2004
Joy Irobi; Katrien Van Impe; Pavel Seeman; Albena Jordanova; Ines Dierick; Nathalie Verpoorten; Andrej Michalik; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Krist’l Vennekens; Radim Mazanec; Ivailo Tournev; David Hilton-Jones; Kevin Talbot; Ivo Kremensky; Ludo Van Den Bosch; Wim Robberecht; Joël Vandekerckhove; Christine Van Broeckhoven; Jan Gettemans; Vincent Timmerman
Distal hereditary motor neuropathies are pure motor disorders of the peripheral nervous system resulting in severe atrophy and wasting of distal limb muscles. In two pedigrees with distal hereditary motor neuropathy type II linked to chromosome 12q24.3, we identified the same mutation (K141N) in small heat-shock 22-kDa protein 8 (encoded by HSPB8; also called HSP22). We found a second mutation (K141E) in two smaller families. Both mutations target the same amino acid, which is essential to the structural and functional integrity of the small heat-shock protein αA-crystallin. This positively charged residue, when mutated in other small heat-shock proteins, results in various human disorders. Coimmunoprecipitation experiments showed greater binding of both HSPB8 mutants to the interacting partner HSPB1. Expression of mutant HSPB8 in cultured cells promoted formation of intracellular aggregates. Our findings provide further evidence that mutations in heat-shock proteins have an important role in neurodegenerative disorders.
Nature Genetics | 2006
Albena Jordanova; Joy Irobi; Florian P. Thomas; Patrick Van Dijck; Kris Meerschaert; Maarten Dewil; Ines Dierick; An Jacobs; Els De Vriendt; Velina Guergueltcheva; Chitharanjan V Rao; Ivailo Tournev; Francisco de Assis Aquino Gondim; Marc D'Hooghe; Veerle Van Gerwen; Patrick Callaerts; Ludo Van Den Bosch; Jean-Pierre Timmermans; Wim Robberecht; Jan Gettemans; Johan M. Thevelein; Ivo Kremensky; Vincent Timmerman
Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153–156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.
American Journal of Human Genetics | 2003
Kristien Verhoeven; Tom Van de Putte; Eva Nelis; An Zwijsen; Nathalie Verpoorten; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Annick Francis; Chantal Ceuterick; Danny Huylebroeck; Vincent Timmerman
Slowed nerve-conduction velocities (NCVs) are a biological endophenotype in the majority of the hereditary motor and sensory neuropathies (HMSN). Here, we identified a family with autosomal dominant segregation of slowed NCVs without the clinical phenotype of HMSN. Peripheral-nerve biopsy showed predominantly thinly myelinated axons. We identified a locus at 8p23 and a Thr109Ile mutation in ARHGEF10, encoding a guanine-nucleotide exchange factor (GEF) for the Rho family of GTPase proteins (RhoGTPases). Rho GEFs are implicated in neural morphogenesis and connectivity and regulate the activity of small RhoGTPases by catalyzing the exchange of bound GDP by GTP. Expression analysis of ARHGEF10, by use of its mouse orthologue Gef10, showed that it is highly expressed in the peripheral nervous system. Our data support a role for ARHGEF10 in developmental myelination of peripheral nerves.
Stem Cells International | 2016
Michel Haagdorens; Sara Ilse Van Acker; Veerle Van Gerwen; Sorcha Ní Dhubhghaill; Carina Koppen; Marie-José Tassignon; Nadia Zakaria
Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.
Neuromuscular Disorders | 2006
Nathalie Verpoorten; Kristl G. Claeys; Liesbet Deprez; An Jacobs; Veerle Van Gerwen; Lieven Lagae; W.F.M. Arts; Linda De Meirleir; Kathelijn Keymolen; Chantal Ceuterick-de Groote; Vincent Timmerman; Eva Nelis
Congenital insensitivity to pain with anhidrosis or hereditary sensory and autonomic neuropathy type IV (HSAN IV) is the first human genetic disorder implicated in the neurotrophin signal transduction pathway. HSAN IV is characterized by absence of reaction to noxious stimuli, recurrent episodes of fever, anhidrosis, self-mutilating behavior and often mental retardation. Mutations in the neurotrophic tyrosine kinase, receptor, type 1 (NTRK1) are associated with this disorder. Here we report four homozygous mutations, two frameshift (p.Gln626fsX6 and p.Gly181fsX58), one missense (p.Arg761Trp) and one splice site (c.359+5G>T) mutation in four HSAN IV patients. The splice site mutation caused skipping of exons 2 and 3 in patients mRNA resulting in an in-frame deletion of the second leucine-rich motif. NTRK1 mutations are only rarely reported in the European population. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with HSAN IV.
British Journal of Ophthalmology | 2017
Michel Haagdorens; Joséphine Behaegel; Jos J. Rozema; Veerle Van Gerwen; Sofie Michiels; Sorcha Ní Dhubhghaill; Marie-José Tassignon; Nadia Zakaria
Aims To evaluate the efficacy of Fourier domain-optical coherence tomography (FD-OCT) in imaging and quantifying the limbal palisades of Vogt and to correlate these images with histological findings. Methods The superior and inferior limbal region of both eyes of 50 healthy volunteers were imaged by FD-OCT. Images were processed and analysed using Matlab software. In vitro immunofluorescent staining of a cadaveric donor limbus was analysed to correlate the presence of stem cells in the visualised structures. Results FD-OCT could successfully visualise limbal crypts and the palisades of Vogt in the limbus region. Fluorescent labelling confirmed the presence of stem cells in these structures. The mean palisade ridge width (ΔPR) and the mean interpalisade epithelial rete peg width (ΔERP) were both of the order of 72 μm, leading to a palisade density (PD) of about 7.4 palisades/mm. A significant difference in ΔPR, ΔERP and PD was seen between the inferior and superior sides of the right eye and the superior sides of the left and right eye(p<0.05.). A significant influence of iris colour on parameters ΔPR, ΔERP and PD was found, and of age on PD and ΔERP (p<0.05). Conclusions In vivo OCT imaging is a safe and effective modality to image the limbus and can be used to visualise the palisades of Vogt. Image processing using Matlab software enabled quantification and density calculation of imaged limbal palisades of Vogt. This technique may enhance targeted limbal biopsies for transplantation.
Investigative Ophthalmology & Visual Science | 2017
Steffi Matthyssen; Sorcha Ní Dhubhghaill; Veerle Van Gerwen; Nadia Zakaria
Purpose The human cornea has recently been described as a source of corneal stroma-derived mesenchymal stem cells (hMSCs). In vitro expansion of these cells involves basal medium supplemented with fetal bovine serum (FBS). As animal-derived serum can confer a risk of disease transmission and can be subject to considerable lot-to-lot variability, it does not comply with newer Good Manufacturing Practice (GMP)-required animal component-free culture protocols for clinical translation. Methods This study investigated animal-free alternatives to FBS for cultivation of human corneal stromal MSCs. Proliferative capacity was studied for cultures supplemented with different concentrations (2.5%, 5%, and 10%) of FBS, human AB serum, human platelet lysate (HPL), and XerumFree. Unsupplemented basal medium was used as a control. The expression of specific hMSC markers (CD73+, CD90+, CD105+, CD19-, CD34-, CD79α-, CD11b-, CD14-, CD45-, and HLA-DR-) and trilineage differentiation (adipogenesis, osteogenesis, and chondrogenesis) were compared for the two outperforming supplements: 10% FBS and HPL. Results HPL is the only consistent non-xeno supplement where hMSC cultures show significantly higher proliferation than the 10% FBS-supplemented cultures. Both FBS- and HPL-supplemented hMSC cultures showed plastic adherence and trilineage differentiation, and no significant differences were found in the expression of the hMSC marker panel. No significant differences in stemness were detected between FBS and HPL cultures. Conclusions We conclude that HPL is the best supplement for expansion of human corneal stromal MSCs. HPL significantly outperforms human AB serum, the chemically defined XerumFree, and even the gold standard, FBS. The xeno-free nature of HPL additionally confers preferred standing for use in GMP-regulated clinical trials using human corneal stromal MSCs.
Journal of Cataract and Refractive Surgery | 2016
Jan Van Looveren; Veerle Van Gerwen; Jean-Pierre Timmermans; Marie-José Tassignon
Purpose To gain insight into the histology of the vitreolenticular interface in congenital unilateral posterior cataract. Setting Antwerp University Hospital, Department of Ophthalmology, Edegem, and the University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium. Design Prospective case study. Methods Samples of the posterior lens capsule of patients with congenital posterior cataract (including opaque plaque on the anterior and adhesion to the vitreous on the posterior surface) were collected during the posterior capsulorhexis procedure. Staining for collagen types II and IV was performed using indirect immunohistochemistry. Results were compared with those of control posterior lens capsules of 3 children and 3 adults. Results Samples were collected from 3 patients. All posterior lens capsules contained collagen type IV. Samples from congenital posterior cataract patients all showed a narrow band of collagen type II on the outer surface, indicating strong adherence of the anterior hyaloid membrane to the center of the posterior lens capsule. Surprisingly, collagen type II was also found in the posterior capsule plaques. Collagen type II was not found in any control posterior lens capsule. Conclusion The adherence of collagen type II to the center of the posterior lens capsule histologically supports the hypothesis that this subgroup of congenital cataract hints at an abnormality at the vitreolenticular interface. Financial Disclosure None of the authors has a financial or proprietary interest in any material or method mentioned.
Acta Ophthalmologica | 2018
Jan Van Looveren; Veerle Van Gerwen; Karin Schildermans; Kris Laukens; Geert Baggerman; Marie-José Tassignon
To obtain insights on the protein composition of posterior capsular plaques (PCP) in congenital unilateral cataract with anterior vitreolenticular interface dysgenesis (AVLID).