Anand Rane
Buck Institute for Research on Aging
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anand Rane.
Neuroscience Letters | 2010
Shankar J. Chinta; Jyothi K. Mallajosyula; Anand Rane; Julie K. Andersen
Alpha-synuclein is the major protein component of Lewy bodies, a cardinal pathological feature of the degenerating Parkinsonian brain. Alpha-synuclein has been reported to be able to intercalate into membranes via formation of an alpha-helical structure at its N-terminal end. Recent in vitro studies from various laboratories have demonstrated that α-synuclein can physically associate with mitochondria and interfere with mitochondrial function. α-Syn predominantly associates with the inner mitochondrial membrane, where it can apparently interact with complex I resulting in reduced mitochondrial complex I activity and increased free radical production. However, the effect of in vivo α-synuclein accumulation within dopaminergic neurons on mitochondrial function has not been thoroughly studied. Examination of transgenic animals which overexpress the familial mutant A53T form of the protein selectively within dopaminergic neurons reveals that A53T localizes to the mitochondrial membranes as monomers and oligomers particularly under conditions of proteasomal inhibitory stress, and that this localization coincides with a selective age-related mitochondrial complex I inhibition and decreased substrate-specific respiration along with increases in mitochondrial autophagy (mitophagy).
PLOS ONE | 2008
Jyothi K. Mallajosyula; Deepinder Kaur; Shankar J. Chinta; Subramanian Rajagopalan; Anand Rane; David G. Nicholls; Donato A. Di Monte; Heather Macarthur; Julie K. Andersen
Age-related increases in monoamine oxidase B (MAO-B) may contribute to neurodegeneration associated with Parkinsons disease (PD). The MAO-B inhibitor deprenyl, a long-standing antiparkinsonian therapy, is currently used clinically in concert with the dopamine precursor L-DOPA. Clinical studies suggesting that deprenyl treatment alone is not protective against PD associated mortality were targeted to symptomatic patients. However, dopamine loss is at least 60% by the time PD is symptomatically detectable, therefore lack of effect of MAO-B inhibition in these patients does not negate a role for MAO-B in pre-symptomatic dopaminergic loss. In order to directly evaluate the role of age-related elevations in astroglial MAO-B in the early initiation or progression of PD, we created genetically engineered transgenic mice in which MAO-B levels could be specifically induced within astroglia in adult animals. Elevated astrocytic MAO-B mimicking age related increase resulted in specific, selective and progressive loss of dopaminergic neurons in the substantia nigra (SN), the same subset of neurons primarily impacted in the human condition. This was accompanied by other PD-related alterations including selective decreases in mitochondrial complex I activity and increased mitochondrial oxidative stress. Along with a global astrogliosis, we observed local microglial activation within the SN. These pathologies correlated with decreased locomotor activity. Importantly, these events occurred even in the absence of the PD-inducing neurotoxin MPTP. Our data demonstrates that elevation of murine astrocytic MAO-B by itself can induce several phenotypes of PD, signifying that MAO-B could be directly involved in multiple aspects of disease neuropathology. Mechanistically this may involve increases in membrane permeant H2O2 which can oxidize dopamine within dopaminergic neurons to dopaminochrome which, via interaction with mitochondrial complex I, can result in increased mitochondrial superoxide. Our inducible astrocytic MAO-B transgenic provides a novel model for exploring pathways involved in initiation and progression of several key features associated with PD pathology and for therapeutic drug testing.
The Journal of Neuroscience | 2007
Shankar J. Chinta; M. J. Kumar; Michael Hsu; Subramanian Rajagopalan; Deepinder Kaur; Anand Rane; David G. Nicholls; Jinah Choi; Julie K. Andersen
Parkinsons disease is a neurodegenerative disorder characterized by the preferential loss of midbrain dopaminergic neurons in the substantia nigra (SN). One of the earliest detectable biochemical alterations that occurs in the Parkinsonian brain is a marked reduction in SN levels of total glutathione (glutathione plus glutathione disulfide), occurring before losses in mitochondrial complex I (CI) activity, striatal dopamine levels, or midbrain dopaminergic neurodegeneration associated with the disease. Previous in vitro data from our laboratory has suggested that prolonged depletion of dopaminergic glutathione results in selective impairment of mitochondrial complex I activity through a reversible thiol oxidation event. To address the effects of depletion in dopaminergic glutathione levels in vivo on the nigrostriatal system, we created genetically engineered transgenic mouse lines in which expression of γ-glutamyl cysteine ligase, the rate-limiting enzyme in de novo glutathione synthesis, can be inducibly downregulated in catecholaminergic neurons, including those of the SN. A novel method for isolation of purified dopaminergic striatal synaptosomes was used to study the impact of dopaminergic glutathione depletion on mitochondrial events demonstrated previously to occur in vitro as a consequence of this alteration. Dopaminergic glutathione depletion was found to result in a selective reversible thiol-oxidation-dependent mitochondrial complex I inhibition, followed by an age-related nigrostriatal neurodegeneration. This suggests that depletion in glutathione within dopaminergic SN neurons has a direct impact on mitochondrial complex I activity via increased nitric oxide-related thiol oxidation and age-related dopaminergic SN cell loss.
Free Radical Biology and Medicine | 2012
Almas Siddiqui; Shankar J. Chinta; Jyothi K. Mallajosyula; Subramanian Rajagopolan; Ingrid M. Hanson; Anand Rane; Simon Melov; Julie K. Andersen
Alpha-synuclein has been reported to be present in the nucleus and levels enhanced by oxidative stress. Herein, we sought to investigate the mechanistic role of nuclear alpha-synuclein. We found that alpha-synuclein nuclear localization coincided with enhanced chromatin binding both in an in vitro and a corresponding in vivo brain oxidative stress model previously characterized by our laboratory as well as in PD brain tissues. Genome-wide chromatin immunoprecipitation (ChIP)-on-chip analysis of alpha-synuclein:promoter binding in response to oxidative stress in vitro revealed that binding occurs at several promoters belonging to a range of functional categories including transcriptional regulation. Interestingly, given the important role of mitochondrial dysfunction in PD, this included binding to the promoter for the master mitochondrial transcription activator, PGC1alpha in vitro, in vivo, and in human brain tissue with age and PD. To test the possible mechanistic impact of alpha-synuclein PGC1alpha promotor binding, we assessed PGC1alpha promoter activity, mRNA, and protein levels and expression of candidate PGC1alpha target genes in our in vitro model. All were found to be reduced in conjunction with increased levels of aberrant mitochondrial morphology and impaired mitochondrial function. Exogenous PGC1alpha expression was found to attenuate alpha-synuclein-mediated mitochondrial dysfunction and subsequent neurotoxicity in vitro. Our data suggest that nuclear alpha-synuclein localization under conditions of oxidative stress may impact on mitochondrial function in part via the proteins capacity to act as a transcriptional modulator of PGC1alpha. This represents a novel role for alpha-synuclein as it relates to mitochondrial dysfunction in PD.
Free Radical Biology and Medicine | 2012
Almas Siddiqui; Sulay Rivera-Sánchez; María del R. Castro; Karina Acevedo-Torres; Anand Rane; Carlos A. Torres-Ramos; David G. Nicholls; Julie K. Andersen; Sylvette Ayala-Torres
Oxidative stress and mitochondrial dysfunction have been implicated in the pathology of HD; however, the precise mechanisms by which mutant huntingtin modulates levels of oxidative damage in turn resulting in mitochondrial dysfunction are not known. We hypothesize that mutant huntingtin increases oxidative mtDNA damage leading to mitochondrial dysfunction. We measured nuclear and mitochondrial DNA lesions and mitochondrial bioenergetics in the STHdhQ7 and STHdhQ111 in vitro striatal model of HD. Striatal cells expressing mutant huntingtin show higher basal levels of mitochondrial-generated ROS and mtDNA lesions and a lower spare respiratory capacity. Silencing of APE1, the major mammalian apurinic/apyrimidinic (AP) endonuclease that participates in the base excision repair (BER) pathway, caused further reductions of spare respiratory capacity in the mutant huntingtin-expressing cells. Localization experiments show that APE1 increases in the mitochondria of wild-type Q7 cells but not in the mutant huntingtin Q111 cells after treatment with hydrogen peroxide. Moreover, these results are recapitulated in human HD striata and HD skin fibroblasts that show significant mtDNA damage (increased lesion frequency and mtDNA depletion) and significant decreases in spare respiratory capacity, respectively. These data suggest that mtDNA is a major target of mutant huntingtin-associated oxidative stress and may contribute to subsequent mitochondrial dysfunction and that APE1 (and, by extension, BER) is an important target in the maintenance of mitochondrial function in HD.
The Journal of Neuroscience | 2015
Almas Siddiqui; Dipa Bhaumik; Shankar J. Chinta; Anand Rane; Subramanian Rajagopalan; Christopher A. Lieu; Gordon J. Lithgow; Julie K. Andersen
Following its activation by PINK1, parkin is recruited to depolarized mitochondria where it ubiquitinates outer mitochondrial membrane proteins, initiating lysosomal-mediated degradation of these organelles. Mutations in the gene encoding parkin, PARK2, result in both familial and sporadic forms of Parkinsons disease (PD) in conjunction with reductions in removal of damaged mitochondria. In contrast to what has been reported for other PARK2 mutations, expression of the Q311X mutation in vivo in mice appears to involve a downstream step in the autophagic pathway at the level of lysosomal function. This coincides with increased PARIS expression and reduced expression of a reciprocal signaling pathway involving the master mitochondrial regulator peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) and the lysosomal regulator transcription factor EB (TFEB). Treatment with rapamycin was found to independently restore PGC1α-TFEB signaling in a manner not requiring parkin activity and to abrogate impairment of mitochondrial quality control and neurodegenerative features associated with this in vivo model. Losses in PGC1α-TFEB signaling in cultured rat DAergic cells expressing the Q311X mutation associated with reduced mitochondrial function and cell viability were found to be PARIS-dependent and to be independently restored by rapamycin in a manner requiring TFEB. Studies in human iPSC-derived neurons demonstrate that TFEB induction can restore mitochondrial function and cell viability in a mitochondrially compromised human cell model. Based on these data, we propose that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via upregulation of TFEB function. SIGNIFICANCE STATEMENT Mutations in PARK2 are generally associated with loss in ability to interact with PINK1, impacting on autophagic initiation. Our data suggest that, in the case of at least one parkin mutation, Q311X, detrimental effects are due to inhibition at the level of downstream lysosomal function. Mechanistically, this involves elevations in PARIS protein levels and subsequent effects on PGC1α-TFEB signaling that normally regulates mitochondrial quality control. Treatment with rapamycin independently restores PGC1α-TFEB signaling in a manner not requiring parkin activity and abrogates subsequent mitochondrial impairment and neuronal cell loss. Taken in total, our data suggest that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via rapamycin.
Journal of Neuroscience Research | 2011
Yong-Hwan Kim; Anand Rane; Stephanie Lussier; Julie K. Andersen
Lithium has recently been suggested to have neuroprotective properties in relation to several neurodegenerative diseases. In this study, we examined the potential cytoprotective effect of lithium in preventing oxidative stress‐induced protein accumulation and neuronal cell death in the presence of increased α‐synuclein levels in vitro and in vivo. Specifically, lithium administration was found to protect against cell death in a hydrogen peroxide‐treated, stable α‐synuclein‐enhanced green fluorescent protein (EGFP)‐overexpressing dopaminergic N27 cell line. Lithium feeding (0.255% lithium chloride) of 9‐month‐old pan‐neuronal α‐synuclein transgenic mice over a 3‐month period was also sufficient to prevent accumulation of oxidized/nitrated α‐synuclein as a consequence of chronic paraquat/maneb administration in multiple brain regions, including the glomerular layer, mitral cells, and the granule cell layer of the olfactory bulb (OB), striatum, substantia nigra pars compacta (SNpc) and Purkinje cells of the cerebellum. Lithium not only prevented α‐synuclein‐mediated protein accumulation/aggregation in these brain regions but also protected neuronal cells including mitral cells and dopaminergic SNpc neurons against oxidative stress‐induced neurodegeneration. These results suggest that lithium can prevent both α‐synuclein accumulation and neurodegeneration in an animal model of PD, suggesting that this drug, already FDA‐approved for use in bipolar disorder, may constitute a novel therapy for another human disease.
Neuromolecular Medicine | 2008
Shankar J. Chinta; Anand Rane; Karen S. Poksay; Dale E. Bredesen; Julie K. Andersen; Rammohan V. Rao
Parkinson’s disease (PD) features oxidative stress and accumulation of misfolded (unfolded, alternatively folded, or mutant) proteins with associated loss of dopaminergic neurons. Oxidative stress and the accumulated misfolded proteins elicit cellular responses that include an endoplasmic reticulum (ER) stress response that may protect cells against the toxic buildup of misfolded proteins. Chronic ER stress and accumulation of misfolded proteins in excessive amounts, however, overwhelm the cellular ‘quality control’ system and impair the protective mechanisms designed to promote correct folding and degrade faulty proteins, ultimately leading to organelle dysfunction and neuronal cell death. Paraquat belongs to a class of bipyridyl herbicides and triggers oxidative stress and dopaminergic cell death. Epidemiological studies suggest an increased risk for developing PD following chronic exposure to paraquat. The present study was carried out to determine the role of paraquat in triggering cellular stress particularly ER stress and to elucidate the pathways that couple ER stress to dopaminergic cell death. We demonstrate that paraquat triggers ER stress, cell dysfunction, and dopaminergic cell death. p23, a small co-chaperone protein, is cleaved during ER stress-induced cell death triggered by paraquat and blockage of the caspase cleavage site of p23 was associated with decreased cell death. Paraquat also inhibits proteasomal activity that may further trigger accumulation of misfolded proteins resulting in ER stress. Our results indicate a protective role for p23 in PD-related programmed cell death. The data also underscore the involvement of ER, caspases, and the proteasomal system in ER stress-induced cell death process.
Neurobiology of Disease | 2010
Almas Siddiqui; Jyothi K. Mallajosyula; Anand Rane; Julie K. Andersen
We previously demonstrated that elevation of astrocytic monoamine oxidase B (MAO-B) levels in a doxycycline (dox)-inducible transgenic mouse model following 14 days of dox induction results in several neuropathologic features similar to those observed in the Parkinsonian midbrain (Mallajosyula et al., 2008). These include a specific, selective and progressive loss of dopaminergic neurons of the substantia nigra (SN), selective decreases in mitochondrial complex I (CI) activity and increased oxidative stress. Here, we report that the temporal sequence of events following MAO-B elevation initially involves increased oxidative stress followed by CI inhibition and finally neurodegeneration. Furthermore, dox removal (DR) at days 3 and 5 of MAO-B induction was sufficient to arrest further increases in oxidative stress as well as subsequent neurodegenerative events. In order to assess the contribution of MAO-B-induced oxidative stress to later events, we compared the impact of DR which reverses the MAO-B increase with treatment of animals with the lipophilic antioxidant compound EUK-189. EUK-189 was found to be as effective as DR in halting downstream CI inhibition and also significantly attenuated SN DA cell loss as a result of astrocytic MAO-B induction. This suggests that MAO-B-mediated ROS contributes to neuropathology associated with this model and that antioxidant treatment can arrest further progression of dopaminergic cell death. This has implications for early intervention therapies.
PLOS ONE | 2013
Christopher A. Lieu; Shankar J. Chinta; Anand Rane; Julie K. Andersen
We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson’s disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions.