Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie K. Andersen is active.

Publication


Featured researches published by Julie K. Andersen.


Nature Medicine | 2004

Oxidative stress in neurodegeneration: cause or consequence?

Julie K. Andersen

Oxidative stress has long been linked to the neuronal cell death that is associated with certain neurodegenerative conditions. Whether it is a primary cause or merely a downstream consequence of the neurodegenerative process is still an open question, however. The advent of a growing number of in vitro and in vivo models that emulate human disease pathology is aiding scientists in deciphering just where oxidative stress intersects with other cellular events in the emerging roadmap leading to neurodegeneration. Here I review the evidence for oxidative stress in neurodegeneration and how this relates to other cellular events.


The Journal of Neuroscience | 2000

Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine

Péter Klivényi; Ole A. Andreassen; Robert J. Ferrante; Alpaslan Dedeoglu; Gerald Mueller; Eric Lancelot; Mikhail B. Bogdanov; Julie K. Andersen; Dongmei Jiang; M. Flint Beal

Glutathione peroxidase (GSHPx) is a critical intracellular enzyme involved in detoxification of hydrogen peroxide (H2O2) to water. In the present study we examined the susceptibility of mice with a disruption of the glutathione peroxidase gene to the neurotoxic effects of malonate, 3-nitropropionic acid (3-NP), and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Glutathione peroxidase knock-out mice showed no evidence of neuropathological or behavioral abnormalities at 2–3 months of age. Intrastriatal injections of malonate resulted in a significant twofold increase in lesion volume in homozygote GSHPx knock-out mice as compared to both heterozygote GSHPx knock-out and wild-type control mice. Malonate-induced increases in conversion of salicylate to 2,3- and 2,5-dihydroxybenzoic acid, an index of hydroxyl radical generation, were greater in homozygote GSHPx knock-out mice as compared with both heterozygote GSHPx knock-out and wild-type control mice. Administration of MPTP resulted in significantly greater depletions of dopamine, 3,4-dihydroxybenzoic acid, and homovanillic acid in GSHPx knock-out mice than those seen in wild-type control mice. Striatal 3-nitrotyrosine (3-NT) concentrations after MPTP were significantly increased in GSHPx knock-out mice as compared with wild-type control mice. Systemic 3-NP administration resulted in significantly greater striatal damage and increases in 3-NT in GSHPx knock-out mice as compared to wild-type control mice. The present results indicate that a knock-out of GSHPx may be adequately compensated under nonstressed conditions, but that after administration of mitochondrial toxins GSHPx plays an important role in detoxifying increases in oxygen radicals.


Neuron | 2003

Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson's disease

Deepinder Kaur; Ferda Yantiri; Subramanian Rajagopalan; Jyothi Kumar; Jun Qin Mo; Rapee Boonplueang; Veena Viswanath; Russell E. Jacobs; Lichuan Yang; M. Flint Beal; Dino DiMonte; Irene Volitaskis; Robert A. Cherny; Ashley I. Bush; Julie K. Andersen

Studies on postmortem brains from Parkinsons patients reveal elevated iron in the substantia nigra (SN). Selective cell death in this brain region is associated with oxidative stress, which may be exacerbated by the presence of excess iron. Whether iron plays a causative role in cell death, however, is controversial. Here, we explore the effects of iron chelation via either transgenic expression of the iron binding protein ferritin or oral administration of the bioavailable metal chelator clioquinol (CQ) on susceptibility to the Parkinsons-inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrapyridine (MPTP). Reduction in reactive iron by either genetic or pharmacological means was found to be well tolerated in animals in our studies and to result in protection against the toxin, suggesting that iron chelation may be an effective therapy for prevention and treatment of the disease.


Biochemical Pharmacology | 2002

Glutathione, iron and Parkinson’s disease

Srinivas Bharath; Michael Hsu; Deepinder Kaur; Subramanian Rajagopalan; Julie K. Andersen

Parkinsons disease (PD) is a progressive neurodegenerative disease involving neurodegeneration of dopaminergic neurons of the substantia nigra (SN), a part of the midbrain. Oxidative stress has been implicated to play a major role in the neuronal cell death associated with PD. Importantly, there is a drastic depletion in cytoplasmic levels of the thiol tripeptide glutathione within the SN of PD patients. Glutathione (GSH) exhibits several functions in the brain chiefly acting as an antioxidant and a redox regulator. GSH depletion has been shown to affect mitochondrial function probably via selective inhibition of mitochondrial complex I activity. An important biochemical feature of neurodegeneration during PD is the presence of abnormal protein aggregates present as intracytoplasmic inclusions called Lewy bodies. Oxidative damage via GSH depletion might also accelerate the build-up of defective proteins leading to cell death of SN dopaminergic neurons by impairing the ubiquitin-proteasome pathway of protein degradation. Replenishment of normal glutathione levels within the brain may hold an important key to therapeutics for PD. Several reports have suggested that iron accumulation in the SN patients might also contribute to oxidative stress during PD.


Seminars in Cancer Biology | 2011

Cellular senescence: a link between cancer and age-related degenerative disease?

Judith Campisi; Julie K. Andersen; Pankaj Kapahi; Simon Melov

Cellular senescence is an established cellular stress response that acts primarily to prevent the proliferation of cells that experience potentially oncogenic stress. In recent years, it has become increasingly apparent that the senescence response is a complex phenotype, which has a variety of cell non-autonomous effects. The senescence-associated secretory phenotype, or SASP, entails the secretion of numerous cytokines, growth factors and proteases. The SASP can have beneficial or detrimental effects, depending on the physiological context. One recently described beneficial effect is to aid tissue repair. Among the detrimental effects, the SASP can disrupt normal tissue structures and function, and, ironically, can promote malignant phenotypes in nearby cells. These detrimental effects in many ways recapitulate the degenerative and hyperplastic pathologies that develop during aging. Because the SASP is largely a response to genomic or epigenomic damage, we suggest it may be a model for a cellular damage response that can propagate damage signals both within and among tissues. We propose that both the degenerative and hyperplastic diseases of aging may be fueled by such damage signals.


Biochimica et Biophysica Acta | 2008

Redox imbalance in Parkinson's disease.

Shankar J. Chinta; Julie K. Andersen

Parkinsons disease (PD) is an adult-onset neurodegenerative disorder characterized by preferential loss of dopaminergic neurons in an area of the midbrain called the substantia nigra (SN) along with occurrence of intraneuronal inclusions called Lewy bodies. The majority of cases of PD are sporadic in nature with late onset (95% of patients); however a few PD cases (5%) are seen in familial clusters with generally earlier onset. Although PD has been heavily researched, so far the exact cause of the rather selective cell death is unknown. Multiple lines of evidence suggest an important role for oxidative stress. Dopaminergic neurons (DA) are particularly prone to oxidative stress due to DA metabolism and auto-oxidation combined with increased iron, decreased total glutathione levels and mitochondrial complex I inhibition-induced ROS production in the SN which can lead to cell death by exceeding the oxidative capacity of DA-containing cells in the region. Enhancing antioxidant capabilities and chelating labile iron pools in this region therefore constitutes a rational approach to prevent or slow ongoing damage of DA neurons. In this review, we summarize the various sources of reactive oxygen species that may cause redox imbalance in PD as well as potential therapeutic targets for attenuation of oxidative stress associated with PD.


Neuroscience Letters | 2010

Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo

Shankar J. Chinta; Jyothi K. Mallajosyula; Anand Rane; Julie K. Andersen

Alpha-synuclein is the major protein component of Lewy bodies, a cardinal pathological feature of the degenerating Parkinsonian brain. Alpha-synuclein has been reported to be able to intercalate into membranes via formation of an alpha-helical structure at its N-terminal end. Recent in vitro studies from various laboratories have demonstrated that α-synuclein can physically associate with mitochondria and interfere with mitochondrial function. α-Syn predominantly associates with the inner mitochondrial membrane, where it can apparently interact with complex I resulting in reduced mitochondrial complex I activity and increased free radical production. However, the effect of in vivo α-synuclein accumulation within dopaminergic neurons on mitochondrial function has not been thoroughly studied. Examination of transgenic animals which overexpress the familial mutant A53T form of the protein selectively within dopaminergic neurons reveals that A53T localizes to the mitochondrial membranes as monomers and oligomers particularly under conditions of proteasomal inhibitory stress, and that this localization coincides with a selective age-related mitochondrial complex I inhibition and decreased substrate-specific respiration along with increases in mitochondrial autophagy (mitophagy).


Journal of Biological Chemistry | 2005

Superoxide Dismutase/Catalase Mimetics Are Neuroprotective against Selective Paraquat-mediated Dopaminergic Neuron Death in the Substantial Nigra IMPLICATIONS FOR PARKINSON DISEASE

Jun Peng; Fang Feng Stevenson; Susan R. Doctrow; Julie K. Andersen

Exposure of mice to the herbicide paraquat has been demonstrated to result in the selective loss of dopaminergic neurons of the substantia nigra, pars compacta (SNpc) akin to what is observed in Parkinson disease (PD). In this study, we investigate the efficacy of two synthetic superoxide dismutase/catalase mimetics (EUK-134 and EUK-189) in protecting against paraquat-induced dopaminergic cell death in both the rat dopaminergic cell line 1RB3AN27 (N27) and primary mesencephalic cultures in vitro and in adult mice in vivo. Our data demonstrate that pretreatment with either EUK-134 or EUK-189 significantly attenuates paraquat-induced neurotoxicity in vitro in a concentration-dependent manner. Furthermore, systemic administration of EUK-189 decreases paraquat-mediated SNpc dopaminergic neuronal cell death in vivo. These findings support a role for oxidative stress in paraquat-induced neurotoxicity and suggest novel therapeutic approaches for neurodegenerative disorders associated with oxidative stress such as PD.


Free Radical Biology and Medicine | 2008

Oxidative and nitrative protein modifications in Parkinson's disease.

Steven R. Danielson; Julie K. Andersen

Parkinsons disease (PD) is a complex neurodegenerative syndrome likely involving contributions from various factors in individuals including genetic susceptibility, exposure to environmental toxins, and the aging process itself. Increased oxidative stress appears to be a common causative aspect involved in the preferential loss of dopaminergic neurons in a region of the brain prominently affected by the disorder, the substantia nigra (SN). Loss of dopaminergic SN neurons is responsible for the classic clinical motor symptoms associated with PD. Several oxidative and nitrative posttranslational modifications (PTMs) have been identified on proteins pertinent to PD that may affect this or other aspects of disease progression. In this review, we discuss several examples of such PTMs to illustrate their potential consequences in terms of initiation or progression of PD neuropathophysiology.


Annals of the New York Academy of Sciences | 2002

Time to Talk SENS: Critiquing the Immutability of Human Aging

Aubrey D.N.J. de Grey; Bruce N. Ames; Julie K. Andersen; Andrzej Bartke; Judith Campisi; Christopher B. Heward; Roger McCarter; Gregory Stock

Aging is a three‐stage process: metabolism, damage, and pathology. The biochemical processes that sustain life generate toxins as an intrinsic side effect. These toxins cause damage, of which a small proportion cannot be removed by any endogenous repair process and thus accumulates. This accumulating damage ultimately drives age‐related degeneration. Interventions can be designed at all three stages. However, intervention in metabolism can only modestly postpone pathology, because production of toxins is so intrinsic a property of metabolic processes that greatly reducing that production would entail fundamental redesign of those processes. Similarly, intervention in pathology is a “losing battle” if the damage that drives it is accumulating unabated. By contrast, intervention to remove the accumulating damage would sever the link between metabolism and pathology, and so has the potential to postpone aging indefinitely. We survey the major categories of such damage and the ways in which, with current or foreseeable biotechnology, they could be reversed. Such ways exist in all cases, implying that indefinite postponement of aging—which we term “engineered negligible senescence”—may be within sight. Given the major demographic consequences if it came about, this possibility merits urgent debate.

Collaboration


Dive into the Julie K. Andersen's collaboration.

Top Co-Authors

Avatar

Shankar J. Chinta

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Subramanian Rajagopalan

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Anand Rane

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Deepinder Kaur

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Jun Peng

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

David G. Nicholls

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Almas Siddiqui

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Gordon J. Lithgow

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Jyothi K. Mallajosyula

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Donna W. Lee

Buck Institute for Research on Aging

View shared research outputs
Researchain Logo
Decentralizing Knowledge