Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ananthanarayan Krishnan is active.

Publication


Featured researches published by Ananthanarayan Krishnan.


Journal of Cognitive Neuroscience | 2011

Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem

Gavin M. Bidelman; Jackson T. Gandour; Ananthanarayan Krishnan

Neural encoding of pitch in the auditory brainstem is known to be shaped by long-term experience with language or music, implying that early sensory processing is subject to experience-dependent neural plasticity. In language, pitch patterns consist of sequences of continuous, curvilinear contours; in music, pitch patterns consist of relatively discrete, stair-stepped sequences of notes. The primary aim was to determine the influence of domain-specific experience (language vs. music) on the encoding of pitch in the brainstem. Frequency-following responses were recorded from the brainstem in native Chinese, English amateur musicians, and English nonmusicians in response to iterated rippled noise homologues of a musical pitch interval (major third; M3) and a lexical tone (Mandarin tone 2; T2) from the music and language domains, respectively. Pitch-tracking accuracy (whole contour) and pitch strength (50 msec sections) were computed from the brainstem responses using autocorrelation algorithms. Pitch-tracking accuracy was higher in the Chinese and musicians than in the nonmusicians across domains. Pitch strength was more robust across sections in musicians than in nonmusicians regardless of domain. In contrast, the Chinese showed larger pitch strength, relative to nonmusicians, only in those sections of T2 with rapid changes in pitch. Interestingly, musicians exhibited greater pitch strength than the Chinese in one section of M3, corresponding to the onset of the second musical note, and two sections within T2, corresponding to a note along the diatonic musical scale. We infer that experience-dependent plasticity of brainstem responses is shaped by the relative saliency of acoustic dimensions underlying the pitch patterns associated with a particular domain.


The Journal of Neuroscience | 2009

Neural Correlates of Consonance, Dissonance, and the Hierarchy of Musical Pitch in the Human Brainstem

Gavin M. Bidelman; Ananthanarayan Krishnan

Consonant and dissonant pitch relationships in music provide the foundation of melody and harmony, the building blocks of Western tonal music. We hypothesized that phase-locked neural activity within the brainstem may preserve information relevant to these important perceptual attributes of music. To this end, we measured brainstem frequency-following responses (FFRs) from nonmusicians in response to the dichotic presentation of nine musical intervals that varied in their degree of consonance and dissonance. Neural pitch salience was computed for each response using temporally based autocorrelation and harmonic pitch sieve analyses. Brainstem responses to consonant intervals were more robust and yielded stronger pitch salience than those to dissonant intervals. In addition, the ordering of neural pitch salience across musical intervals followed the hierarchical arrangement of pitch stipulated by Western music theory. Finally, pitch salience derived from neural data showed high correspondence with behavioral consonance judgments (r = 0.81). These results suggest that brainstem neural mechanisms mediating pitch processing show preferential encoding of consonant musical relationships and, furthermore, preserve the hierarchical pitch relationships found in music, even for individuals without formal musical training. We infer that the basic pitch relationships governing music may be rooted in low-level sensory processing and that an encoding scheme that favors consonant pitch relationships may be one reason why such intervals are preferred behaviorally.


Hearing Research | 2002

Human frequency-following responses: representation of steady-state synthetic vowels

Ananthanarayan Krishnan

Auditory nerve single-unit population studies have demonstrated that phase-locking plays a dominant role in the neural encoding of the spectrum of speech sounds. Given this, it was reasoned that the phase-locked neural activity underlying the scalp-recorded human frequency-following response (FFR) might preserve information about certain acoustic features of speech sounds. It was recently reported (Ananthanarayan, A.K., 1999. J. Audiol. Neurootol. 4, 95-103) that the FFR spectrum to simple two-tone approximations of several English back vowels does indeed contain peaks corresponding to the first and second formant frequencies. In this investigation FFRs to the more complex steady-state synthetic English back vowels (/u/, /)/, and /a/) were evaluated. FFRs were obtained from 10 normal-hearing human adults at 85, 75, 65, and 55 dB normal-hearing level (nHL). Spectrum analyses of the FFRs revealed distinct peaks at harmonics adjacent to the first and the second formants across all levels suggesting that phase-locked activity among two distinct populations of neurons is indeed preserved in the FFR. For each vowel the spectral peaks at first formant harmonics dominated the spectrum at high stimulus levels suggesting formant capture. The observation of less robust peaks for harmonics between the formants may very well suggest selective suppression to enhance spectral peaks at the formant frequencies. These results suggest that the scalp-recorded FFR may provide for a non-invasive analytic window to evaluate neural encoding of speech sounds in the brainstem of normal-hearing individuals and how this encoding may be degraded subsequent to cochlear hearing impairment.


Brain Research | 2007

Mismatch negativity to pitch contours is influenced by language experience.

Bharath Chandrasekaran; Ananthanarayan Krishnan; Jackson T. Gandour

A cross-language study utilizing the mismatch negativity (MMN) evoked response was conducted to explore the influence of language experience on the preattentive cortical processing of linguistically relevant pitch contours. Chinese and English subjects were presented with Mandarin Chinese tones while the mismatch negativity (MMN) response was elicited using a passive oddball paradigm. Two oddball conditions were constructed with a common deviant, a low falling rising contour tone (T3). One condition consisted of two tones that are acoustically similar to one another (T2/T3: T2, high rising contour=standard). The other condition consisted of two tones that are acoustically dissimilar to one another (T1/T3: T1, high level=standard). These tonal pairs enabled us to assess whether different degrees of similarity between pitch movements exert a differential influence on preattentive pitch processing. Results showed that the mean MMN amplitude of the Chinese group was larger than that of the English group for the T1/T3 condition. No group differences were found for the T2/T3 condition. The mean MMN amplitude was larger for the T1/T3 relative to the T2/T3 condition for the Chinese group only. By virtue of these language group differences, we infer that early cortical processing of pitch contours may be shaped by the relative saliency of acoustic dimensions underlying the pitch patterns of a particular language.


Brain and Language | 2009

Relative influence of musical and linguistic experience on early cortical processing of pitch contours

Bharath Chandrasekaran; Ananthanarayan Krishnan; Jackson T. Gandour

To assess domain specificity of experience-dependent pitch representation we evaluated the mismatch negativity (MMN) and discrimination judgments of English musicians, English nonmusicians, and native Chinese for pitch contours presented in a nonspeech context using a passive oddball paradigm. Stimuli consisted of homologues of Mandarin high rising (T2) and high level (T1) tones, and a linear rising ramp (T2L). One condition involved a between-category contrast (T1/T2), the other, a within-category contrast (T2L/T2). Irrespective of condition, musicians and Chinese showed larger MMN responses than nonmusicians; Chinese larger than musicians. Chinese, however, were less accurate than nonnatives in overt discrimination of T2L and T2. Taken together, these findings suggest that experience-dependent effects to pitch contours are domain-general and not driven by linguistic categories. Yet specific differences in long-term experience in pitch processing between domains (music vs. language) may lead to gradations in cortical plasticity to pitch contours.


Brain and Language | 2009

The role of the auditory brainstem in processing linguistically-relevant pitch patterns

Ananthanarayan Krishnan; Jackson T. Gandour

Historically, the brainstem has been neglected as a part of the brain involved in language processing. We review recent evidence of language-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem. We argue that there is enhancing of linguistically-relevant pitch dimensions or features well before the auditory signal reaches the cerebral cortex. We propose that long-term experience with a tone language sharpens the tuning characteristics of neurons along the pitch axis with enhanced sensitivity to linguistically-relevant, rapidly changing sections of pitch contours. Though not specific to a speech context, experience-dependent brainstem mechanisms for pitch representation are clearly sensitive to particular aspects of pitch contours that native speakers of a tone language have been exposed to. Such experience-dependent effects on lower-level sensory processing are compatible with more integrated, hierarchically organized pathways to language and the brain.


Journal of Cognitive Neuroscience | 2009

Experience-dependent enhancement of linguistic pitch representation in the brainstem is not specific to a speech context

Ananthanarayan Krishnan; Jayaganesh Swaminathan; Jackson T. Gandour

Neural representation of pitch is influenced by lifelong experiences with music and language at both cortical and subcortical levels of processing. The aim of this article is to determine whether neural plasticity for pitch representation at the level of the brainstem is dependent upon specific dimensions of pitch contours that commonly occur as part of a native listeners language experience. Brainstem frequency following responses (FFRs) were recorded from Chinese and English participants in response to four Mandarin tonal contours presented in a nonspeech context in the form of iterated rippled noise. Pitch strength (whole contour, 250 msec; 40-msec segments) and pitch-tracking accuracy (whole contour) were extracted from the FFRs using autocorrelation algorithms. Narrow band spectrograms were used to extract spectral information. Results showed that the Chinese group exhibits smoother pitch tracking than the English group in three out of the four tones. Moreover, cross-language comparisons of pitch strength of 40-msec segments revealed that the Chinese group exhibits more robust pitch representation of those segments containing rapidly changing pitch movements across all four tones. FFR spectral data were complementary showing that the Chinese group exhibits stronger representation of multiple pitch-relevant harmonics relative to the English group across all four tones. These findings support the view that at early preattentive stages of subcortical processing, neural mechanisms underlying pitch representation are shaped by particular dimensions of the auditory stream rather than speech per se. Adopting a temporal correlation analysis scheme for pitch encoding, we propose that long-term experience sharpens the tuning characteristics of neurons along the pitch axis with enhanced sensitivity to linguistically relevant variations in pitch.


Hearing Research | 2010

Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings.

C. Clinard; Kelly L. Tremblay; Ananthanarayan Krishnan

Older adults, even with clinically normal hearing sensitivity, have auditory perceptual deficits relative to their younger counterparts. This difficulty may in part, be related to a decline in the neural representation of frequency. The purpose of this study was to examine the effect of age on behavioral and physiological measures of frequency representation. Thirty two adults (ages 22-77), with hearing thresholds 25 dB HL at octave frequencies 0.25-8.0 kHz, participated in this experiment. Frequency discrimination difference limens (FDLs) were obtained at 500 and 1000 Hz using a two-interval, two-alternative forced choice procedure. Linear regression analyses showed significant declines in FDLs at both frequencies as age increased. Frequency-following responses (FFRs) were elicited by 500 and 1000 Hz tonebursts, as well as at frequencies within and outside those FDLs. Linear regression of FFR phase coherence and FFR amplitude at frequencies at and slightly below 1000 Hz showed significant decreases as age increased. Therefore, pitch discrimination, as measured by FDLs, and neural representation of frequency, as reflected by FFR, declined as age increased. Although perception and neural representation concurrently declined, one was not predictive of the other.


Journal of Neurolinguistics | 2010

The effects of tone language experience on pitch processing in the brainstem.

Ananthanarayan Krishnan; Jackson T. Gandour; Gavin M. Bidelman

Neural encoding of pitch in the auditory brainstem is shaped by long-term experience with language. The aim herein was to determine to what extent this experience-dependent effect is specific to a particular language. Analysis of variance of brainstem responses to Mandarin and Thai tones revealed that regardless of language identity, pitch-tracking accuracy of whole tones was higher in the two tone language groups (Chinese, Thai) compared to the non-tone language group (English), and that pitch strength of 40-ms tonal sections was generally more robust in tone relative to non-tone languages. Discriminant analysis of tonal sections, as defined by variation in direction and degree of slope, showed that moderate rising pitch was the most important variable for classifying English, Chinese, and Thai participants into their respective groups. We conclude that language-dependent enhancement of pitch representation transfers to other languages with similar phonological systems. From a neurobiological perspective, these findings suggest that neural mechanisms local to the brainstem are tuned for processing pitch dimensions that are perceptually salient depending upon the melodic patterns of a language.


Brain and Cognition | 2011

Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch

Gavin M. Bidelman; Jackson T. Gandour; Ananthanarayan Krishnan

Behavioral and neurophysiological transfer effects from music experience to language processing are well-established but it is currently unclear whether or not linguistic expertise (e.g., speaking a tone language) benefits music-related processing and its perception. Here, we compare brainstem responses of English-speaking musicians/non-musicians and native speakers of Mandarin Chinese elicited by tuned and detuned musical chords, to determine if enhancements in subcortical processing translate to improvements in the perceptual discrimination of musical pitch. Relative to non-musicians, both musicians and Chinese had stronger brainstem representation of the defining pitches of musical sequences. In contrast, two behavioral pitch discrimination tasks revealed that neither Chinese nor non-musicians were able to discriminate subtle changes in musical pitch with the same accuracy as musicians. Pooled across all listeners, brainstem magnitudes predicted behavioral pitch discrimination performance but considering each group individually, only musicians showed connections between neural and behavioral measures. No brain-behavior correlations were found for tone language speakers or non-musicians. These findings point to a dissociation between subcortical neurophysiological processing and behavioral measures of pitch perception in Chinese listeners. We infer that sensory-level enhancement of musical pitch information yields cognitive-level perceptual benefits only when that information is behaviorally relevant to the listener.

Collaboration


Dive into the Ananthanarayan Krishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Plack

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar

C. Clinard

James Madison University

View shared research outputs
Researchain Logo
Decentralizing Knowledge