Anatoly A. Philimonenko
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anatoly A. Philimonenko.
Histochemistry and Cell Biology | 2005
Katarína Kyselá; Anatoly A. Philimonenko; Vlada V. Philimonenko; Jiří Janáček; Michal Kahle; Pavel Hozák
As previous studies suggested, nuclear myosin I (NMI) and actin have important roles in DNA transcription. In this study, we characterized the dynamics of these two proteins during transcriptional activation in phytohemagglutinin (PHA) stimulated human lymphocytes. The stimulation led to strong up-regulation of NMI both on the mRNA and protein level, while actin was relatively stably expressed. The intranuclear distribution of actin and NMI was evaluated using immunogold labeling. In nucleoli of resting cells, actin was localized predominantly to fibrillar centers (FCs), while NMI was located mainly to the dense fibrillar component (DFC). Upon stimulation, FCs remained the main site of actin localization, however, an accumulation of both actin and NMI in the DFC and in the granular component was observed. In the nucleoplasm of resting lymphocytes, both actin and NMI were localized mostly in condensed chromatin. Following stimulation, the majority of both proteins shifted towards the decondensed chromatin. In transcriptionally active cells, both actin and NMI colocalized with nucleoplasmic transcription sites. These results demonstrate that actin and NMI are compartmentalized in the nuclei where they can dynamically translocate depending on transcriptional activity of the cells.
Journal of Cellular Physiology | 2012
Barbora Hořejší; Stanislav Vinopal; Vladimíra Sládková; Eduarda Dráberová; Vadym Sulimenko; Tetyana Sulimenko; Věra Vosecká; Anatoly A. Philimonenko; Pavel Hozák; Christos D. Katsetos; Pavel Dráber
γ‐Tubulin is assumed to be a typical cytosolic protein necessary for nucleation of microtubules from microtubule organizing centers. Using immunolocalization and cell fractionation techniques in combination with siRNAi and expression of FLAG‐tagged constructs, we have obtained evidence that γ‐tubulin is also present in nucleoli of mammalian interphase cells of diverse cellular origins. Immunoelectron microscopy has revealed γ‐tubulin localization outside fibrillar centers where transcription of ribosomal DNA takes place. γ‐Tubulin was associated with nucleolar remnants after nuclear envelope breakdown and could be translocated to nucleoli during mitosis. Pretreatment of cells with leptomycin B did not affect the distribution of nuclear γ‐tubulin, making it unlikely that rapid active transport via nuclear pores participates in the transport of γ‐tubulin into the nucleus. This finding was confirmed by heterokaryon assay and time‐lapse imaging of photoconvertible protein Dendra2 tagged to γ‐tubulin. Immunoprecipitation from nuclear extracts combined with mass spectrometry revealed an association of γ‐tubulin with tumor suppressor protein C53 located at multiple subcellular compartments including nucleoli. The notion of an interaction between γ‐tubulin and C53 was corroborated by pull‐down and co‐immunoprecipitation experiments. Overexpression of γ‐tubulin antagonized the inhibitory effect of C53 on DNA damage G2/M checkpoint activation. The combined results indicate that aside from its known role in microtubule nucleation, γ‐tubulin may also have nuclear‐specific function(s). J. Cell. Physiol. 227: 367–382, 2012.
Histochemistry and Cell Biology | 2006
Anatoly A. Philimonenko; Zdeněk Hodný; Dean A. Jackson; Pavel Hozák
Most DNA synthesis in HeLa cell nucleus is concentrated in discrete foci. These synthetic sites can be identified by electron microscopy after allowing permeabilized cells to elongate nascent DNA in the presence of biotin-dUTP. Biotin incorporated into nascent DNA can be then immunolabeled with gold particles. Two types of DNA synthetic sites/replication factories can be distinguished at ultrastructural level: (1) electron-dense structures—replication bodies (RB), and (2) focal replication sites with no distinct underlying structure—replication foci (RF). The protein composition of these synthetic sites was studied using double immunogold labeling. We have found that both structures contain (a) proteins involved in DNA replication (DNA polymerase α, PCNA), (b) regulators of the cell cycle (cyclin A, cdk2), and (c) RNA processing components like Sm and SS-B/La auto antigens, p80-coilin, hnRNPs A1 and C1/C2. However, at least four regulatory and structural proteins (Cdk1, cyclin B1, PML and lamin B1) differ in their presence in RB and RF. Moreover, in contrast to RF, RB have structural organization. For example, while DNA polymerase α, PCNA and hnRNP A1 were diffusely spread throughout RB, hnRNP C1/C2 was found only at the very outside. Surprisingly, RB contained only small amounts of DNA. In conclusion, synthetic sites of both types contain similar but not the same sets of proteins. RB, however, have more developed microarchitecture, apparently with specific functional zones. This data suggest possible differences in genome regions replicated by these two types of replication factories.
Histochemistry and Cell Biology | 2014
Vlada V. Philimonenko; Anatoly A. Philimonenko; I. Šloufová; M. Hrubý; F. Novotný; Z. Halbhuber; M. Krivjanská; Jana Nebesářová; Miroslav Šlouf; Pavel Hozák
Simultaneous detection of biological molecules by means of indirect immunolabeling provides valuable information about their localization in cellular compartments and their possible interactions in macromolecular complexes. While fluorescent microscopy allows for simultaneous detection of multiple antigens, the sensitive electron microscopy immunodetection is limited to only two antigens. In order to overcome this limitation, we prepared a set of novel, shape-coded metal nanoparticles readily discernible in transmission electron microscopy which can be conjugated to antibodies or other bioreactive molecules. With the use of novel nanoparticles, various combinations with commercial gold nanoparticles can be made to obtain a set for simultaneous labeling. For the first time in ultrastructural histochemistry, up to five molecular targets can be identified simultaneously. We demonstrate the usefulness of the method by mapping of the localization of nuclear lipid phosphatidylinositol-4,5-bisphosphate together with four other molecules crucial for genome function, which proves its suitability for a wide range of biomedical applications.
Brain Research | 2015
Nina Kosi; Ivan Alić; Matea M Kolačević; Nina Vrsaljko; Nataša Jovanov Milošević; Margarita Sobol; Anatoly A. Philimonenko; Pavel Hozák; Srećko Gajović; Roland Pochet; Dinko Mitrečić
The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue.
Histochemistry and Cell Biology | 2012
Margarita A. Sobol; Vlada V. Philimonenko; Anatoly A. Philimonenko; Pavel Hozák
Using quantitative evaluation of immuno-gold labeling and antigen content, we evaluated various automated freeze-substitution protocols used in preparation of biological samples for immunoelectron microscopy. Protein extraction from cryoimmobilized cells was identified as a critical point during the freeze-substitution. The loss of antigens (potentially available for subsequent immuno-gold labeling) was not significantly affected by freezing, while the cryosubstitution with an organic solvent caused a significant loss of antigens. While addition of water can improve visibility of some cell structures, it strengthened the negative effect of cryosubstitution on antigen loss by extraction. This was, however, significantly reversed in the presence of 0.5% glutaraldehyde in the substitution medium. Furthermore, we showed that the level of these changes was antigen-dependent. In conclusion, low concentrations of glutaraldehyde can be generally recommended for cryosubstitution rather than the use of pure solvent, but the exact conditions need to be elaborated individually for certain antigens.
Colloids and Surfaces B: Biointerfaces | 2012
Miroslav Šlouf; Martin Hruby; Zulfiya Bakaeva; Helena Vlkova; Jana Nebesarova; Anatoly A. Philimonenko; Pavel Hozák
Stable Pd nanocubes (PdNC) with the average size ~15 nm were prepared by the controlled reduction of sodium tetrachloropalladate with ascorbic acid in water, in the presence of polyvinylpyrrolidone and potassium bromide. Morphology of the particles was characterized by transmission electron microscopy (TEM) and their stability in the colloidal solution was verified by dynamic light scattering (DLS). It has been demonstrated that the Pd nanocubes can be distinguished from commercial Au nanospheres in a standard TEM microscope by means of automated image analysis. In the next step, the PdNC were successfully conjugated to immunoglobulin proteins and used for the detection of a specific protein (nucleophosmin) on ultrathin sections of HeLa cells. Our experiments showed that PdNC can be used for multiple immunolabeling in combination with commercial Au nanospheres.
Cell and Tissue Research | 2011
Pavla Maňásková-Postlerová; Nina Davidová; Miroslav Šulc; Anatoly A. Philimonenko; Pavel Hozák; Věra Jonáková
Beta-microseminoprotein (MSP) is a predominant protein of human seminal plasma and originates from prostate secretions. MSP from boar seminal plasma has been sequenced and shows only 50%-52% homology with that of human. Porcine MSP is synthesized by the post-natal prostate gland and is identical with the sperm motility inhibitor. Although MSP is a protein characteristic of the prostate gland, we have established the presence of its mRNA transcript not only in boar prostate but also in other reproductive organ tissues. In extracts of all these organs, specific polyclonal antiMSP antibody recognizes a 12-kDa protein band identified by mass spectrometry as MSP. Immunofluorescence (IMF) has revealed the occurrence of MSP in the epithelial tissue of the prostate, epididymis, seminal vesicles and Cowper’s glands. MSP has been localized on epididymal spermatozoa in the acrosomal region and on the flagellum of ejaculated spermatozoa. The absence of MSP on the surface of capacitated spermatozoa together with the antibody detection of MSP in the sperm acidic extract after in vitro capacitation indicates its acrosomal origin. Additionally, MSP has been localized by IMF in the sperm acrosome in capacitated spermatozoa with a permeabilized plasma membrane and by electron microscopy in ejaculated spermatozoa. The function of MSP in seminal plasma and spermatozoa is not fully understood. Nevertheless, the secretion of porcine MSP by various reproductive organs indicates its multiple roles in the reproductive process. For the first time in mammalian species, MSP has been localized in various physiological stages of sperm.
Journal of Structural Biology | 2011
Anatoly A. Philimonenko; Jiri Janacek; Luc Snyers; Marlene Almeder; Walter Berger; Wolfgang Schmidt; Christian Schöfer; Pavel Hozák; Klara Weipoltshammer
The radial position of a gene within its chromosome territory (CT) in the interphase nucleus is thought to depend on the transcriptional activity of the gene and on transcriptional activity, gene density, and conformation of the chromosomal surrounding. In this study we analyzed the position of the cell cycle regulator gene p21 within the CT of human chromosome 6 (HSA6) upon transcriptional activation. Whereas the majority of active p21 genes is located in the interior of the CT of HSA6, induction of p21 transcription correlates with increased variation of gene localization within the CT and with a higher percentage of p21 genes located at the periphery of the CT. Additionally it demonstrates once more that transcription can take place throughout CTs. Comparison of the p21 locus with two non-coding regions on HSA6 showed that both non-coding sequences are located more frequently in the interior of the CT than p21 genes although they are situated in chromosomal neighborhoods with widely differing gene density and regional transcriptional activity. Thus our data support models describing an influence of the transcriptional activity of a gene on the localization within its CT. However, our data also indicate that additional factors such as chromatin remodeling are implicated in the positioning of genes within the respective chromosome territory.
Journal of Structural Biology | 2000
Anatoly A. Philimonenko; Jiří Janáček; Pavel Hozák