Vlada V. Philimonenko
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vlada V. Philimonenko.
Nature Cell Biology | 2004
Vlada V. Philimonenko; Jian Zhao; Sebastian Iben; Hana Dingová; Katarína Kyselá; Michal Kahle; Hanswalter Zentgraf; Wilma A. Hofmann; Primal de Lanerolle; Pavel Hozák; Ingrid Grummt
The presence of actin and nuclear myosin I (NMI) in the nucleus suggests a role for these motor proteins in nuclear functions. We have investigated the role of actin and nuclear myosin I (NMI) in the transcription of ribosomal RNA genes (rDNA). Both proteins are associated with rDNA and are required for RNA polymerase I (Pol I) transcription. Microinjection of antibodies against actin or NMI, as well as short interfering RNA-mediated depletion of NMI, decreased Pol I transcription in vivo, whereas overexpression of NMI augmented pre-rRNA synthesis. In vitro, recombinant NMI activated Pol I transcription, and antibodies to NMI or actin inhibited Pol I transcription both on naked DNA and pre-assembled chromatin templates. Whereas actin associated with Pol I, NMI bound to Pol I through the transcription-initiation factor TIF-IA. The association with Pol I requires phosphorylation of TIF-IA at Ser 649 by RSK kinase, indicating a role for NMI in the growth-dependent regulation of rRNA synthesis.
Nature Cell Biology | 2004
Wilma A. Hofmann; Ljuba Stojiljkovic; Beata Fuchsova; Gabriela M. Vargas; Evangelos Mavrommatis; Vlada V. Philimonenko; Katarína Kyselá; James A. Goodrich; James L. Lessard; Thomas J. Hope; Pavel Hozák; Primal de Lanerolle
Actin is abundant in the nucleus and has been implicated in transcription; however, the nature of this involvement has not been established. Here we demonstrate that β-actin is critically involved in transcription because antibodies directed against β-actin, but not muscle actin, inhibited transcription in vivo and in vitro. Chromatin immunoprecipitation assays demonstrated the recruitment of actin to the promoter region of the interferon-γ-inducible MHC2TA gene as well as the interferon-α-inducible G1P3 gene. Further investigation revealed that actin and RNA polymerase II co-localize in vivo and also co-purify. We employed an in vitro system with purified nuclear components to demonstrate that antibodies to β-actin block the initiation of transcription. This assay also demonstrates that β-actin stimulates transcription by RNA polymerase II. Finally, DNA-binding experiments established the presence of β-actin in pre-initiation complexes and also showed that the depletion of actin prevented the formation of pre-initiation complexes. Together, these data suggest a fundamental role for actin in the initiation of transcription by RNA polymerase II.
Histochemistry and Cell Biology | 2005
Katarína Kyselá; Anatoly A. Philimonenko; Vlada V. Philimonenko; Jiří Janáček; Michal Kahle; Pavel Hozák
As previous studies suggested, nuclear myosin I (NMI) and actin have important roles in DNA transcription. In this study, we characterized the dynamics of these two proteins during transcriptional activation in phytohemagglutinin (PHA) stimulated human lymphocytes. The stimulation led to strong up-regulation of NMI both on the mRNA and protein level, while actin was relatively stably expressed. The intranuclear distribution of actin and NMI was evaluated using immunogold labeling. In nucleoli of resting cells, actin was localized predominantly to fibrillar centers (FCs), while NMI was located mainly to the dense fibrillar component (DFC). Upon stimulation, FCs remained the main site of actin localization, however, an accumulation of both actin and NMI in the DFC and in the granular component was observed. In the nucleoplasm of resting lymphocytes, both actin and NMI were localized mostly in condensed chromatin. Following stimulation, the majority of both proteins shifted towards the decondensed chromatin. In transcriptionally active cells, both actin and NMI colocalized with nucleoplasmic transcription sites. These results demonstrate that actin and NMI are compartmentalized in the nuclei where they can dynamically translocate depending on transcriptional activity of the cells.
Histochemistry and Cell Biology | 2010
E. Castano; Vlada V. Philimonenko; Michal Kahle; J. Fukalová; Alžběta Kalendová; Sukriye Yildirim; R. Dzijak; H. Dingová-Krásna; Pavel Hozák
Actin is a well-known protein that has shown a myriad of activities in the cytoplasm. However, recent findings of actin involvement in nuclear processes are overwhelming. Actin complexes in the nucleus range from very dynamic chromatin-remodeling complexes to structural elements of the matrix with single partners known as actin-binding proteins (ABPs). This review summarizes the recent findings of actin-containing complexes in the nucleus. Particular attention is given to key processes like chromatin remodeling, transcription, DNA replication, nucleocytoplasmic transport and to actin roles in nuclear architecture. Understanding the mechanisms involving ABPs will definitely lead us to the principles of the regulation of gene expression performed via concerting nuclear and cytoplasmic processes.
Histochemistry and Cell Biology | 2009
Hana Dingová; Jana Fukalová; Miloslava Maninová; Vlada V. Philimonenko; Pavel Hozák
Nuclear actin plays an important role in such processes as chromatin remodeling, transcriptional regulation, RNA processing, and nuclear export. Recent research has demonstrated that actin in the nucleus probably exists in dynamic equilibrium between monomeric and polymeric forms, and some of the actin-binding proteins, known to regulate actin dynamics in cytoplasm, have been also shown to be present in the nucleus. In this paper, we present ultrastructural data on distribution of actin and various actin-binding proteins (α-actinin, filamin, p190RhoGAP, paxillin, spectrin, and tropomyosin) in nuclei of HeLa cells and resting human lymphocytes. Probing extracts of HeLa cells for the presence of actin-binding proteins also confirmed their presence in nuclei. We report for the first time the presence of tropomyosin and p190RhoGAP in the cell nucleus, and the spatial colocalization of actin with spectrin, paxillin, and α-actinin in the nucleolus.
Journal of Cell Science | 2013
Sukriye Yildirim; Enrique Castaño; Margarita Sobol; Vlada V. Philimonenko; Rastislav Dzijak; Tomáš Venit; Pavel Hozák
Summary RNA polymerase I (Pol I) transcription is essential for the cell cycle, growth and protein synthesis in eukaryotes. In the present study, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) is a part of the protein complex on the active ribosomal promoter during transcription. PIP2 makes a complex with Pol I and the Pol I transcription factor UBF in the nucleolus. PIP2 depletion reduces Pol I transcription, which can be rescued by the addition of exogenous PIP2. In addition, PIP2 also binds directly to the pre-rRNA processing factor fibrillarin (Fib), and co-localizes with nascent transcripts in the nucleolus. PIP2 binding to UBF and Fib modulates their binding to DNA and RNA, respectively. In conclusion, PIP2 interacts with a subset of Pol I transcription machinery, and promotes Pol I transcription.
Biology of Reproduction | 2003
Bolette Bjerregaard; C. Wrenzycki; Vlada V. Philimonenko; Pavel Hozák; J. Laurincik; Heiner Niemann; Jan Motlik; Poul Maddox-Hyttel
Abstract In porcine oocytes, acquisition of meiotic competence coincides with a decrease of general transcriptional activity at the end of the oocyte growth phase and, specifically, of ribosomal RNA (rRNA) synthesis in the nucleolus. The present study investigated the regulation of rRNA synthesis during porcine oocyte growth. Localization and expression of components involved in regulation of the rRNA synthesis (the RNA polymerase I-associated factor PAF53, upstream binding factor [UBF], and the pocket proteins p130 and pRb) were assessed by immunocytochemistry and semiquantitative reverse transcription-polymerase chain reaction and correlated with ultrastructural analysis and autoradiography following [3H]uridine incubation in growing and fully grown porcine oocytes. In addition, meiotic resumption, ultrastructure, and expression of p130, UBF, and PAF53 were analyzed in growing and fully grown porcine oocytes cultured with 100 μM butyrolactone I (BL-I), a potent inhibitor of cyclin-dependent kinases, to gain insight concerning the regulation of rRNA transcription during meiotic arrest. Immunocytochemical analysis demonstrated that p130 became colocalized with UBF and PAF53 and that the intensity of the PAF53 labeling decreased toward the end of the oocyte growth phase. These data suggest that the decrease in rRNA synthesis is regulated through inhibition of UBF by p130 as well as by decreased availability of PAF53. Moreover, expression of mRNA encoding PAF53 was decreased at the end of the oocyte growth phase. At the morphological level, these events coincided with inactivation of the nucleolus, as visualized by the transformation of the fibrillogranular nucleolus to an electron-dense fibrillar sphere with remnants of the fibrillar centers at the surface. Meiotic inhibition with 100 μM BL-I had a detrimental effect on the ability of porcine oocytes to resume meiosis and on nucleolus morphology, resulting in a lack of RNA synthetic capability as the fibrillar components, where rRNA transcription and initial processing occur, condensed or even disintegrated.
Nucleus | 2013
Margarita Sobol; Sukriye Yildirim; Vlada V. Philimonenko; Pavel Marášek; Enrique Castaño; Pavel Hozák
To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis.
Histochemistry and Cell Biology | 2010
Vlada V. Philimonenko; Jiří Janáček; Masahiko Harata; Pavel Hozák
Nuclear actin and nuclear myosin I (NMI) are important players in transcription of ribosomal genes. Transcription of rDNA takes place in highly organized intranuclear compartment, the nucleolus. In this study, we characterized the localization of these two proteins within the nucleolus of HeLa cells with high structural resolution by means of electron microscopy and gold-immunolabeling. We demonstrate that both actin and NMI are localized in specific compartments within the nucleolus, and the distribution of NMI is transcription-dependent. Moreover, a pool of NMI is present in the foci containing nascent rRNA transcripts. Actin, in turn, is present both in transcriptionally active and inactive regions of the nucleolus and colocalizes with RNA polymerase I and UBF. Our data support the involvement of actin and NMI in rDNA transcription and point out to other functions of these proteins in the nucleolus, such as rRNA maturation and maintenance of nucleolar architecture.
Biology of Reproduction | 2004
Vladimir Baran; Antonin Pavlok; Bolette Bjerregaard; C. Wrenzycki; Doris Hermann; Vlada V. Philimonenko; Georgios Lapathitis; Pavel Hozák; Heiner Niemann; Jan Motlik
Abstract The aim of this study was to describe the dynamic changes in the localization of the key nucleolar protein markers, fibrillarin, B23/nucleophosmin, C23/nucleolin, protein Nopp140, during the final stages of bovine oocyte growth. All these proteins were present in the large reticulated nucleoli of oocytes from the small-size category follicles (<1 mm). The entire nucleolus exhibited strong positivity for UBF (upstream binding factor, RNA polymerase I-specific transcription initiation factor), which displayed a dotted staining pattern. In contrast, protein p130 was diffusely distributed throughout the nucleus and excluded from nucleoli. In oocytes approaching the late period of growth (2–3-mm follicles), UBF localization shifted to the nucleolar periphery. Double staining of UBF-p130 revealed a gradual accumulation of p130 at the periphery shell around the nucleolus. In fully grown oocytes (>3-mm follicles), all studied nucleolar proteins were detected in the small compact nucleoli. The cap structure, attached to the compact nucleolus surface, was positive for UBF and PAF53 (subunit of RNA polymerase I). The UBF-positive cap showed a close structural association with p130. It is concluded that, during the process of oocyte nucleolus compaction, UBF and PAF53, proteins involved in the rDNA transcription, are segregated from fibrillarin and Nopp140, proteins essential for early steps of pre-rRNA processing. The observed changes may reflect the transition from pre-rRNA synthesis to pre-rRNA processing as an analysis of the relative abundance of the developmentally important gene transcripts confirmed. In addition, discovered structural association between UBF and p130 suggests a role for pocket proteins in ribosomal gene silencing in mammalian oocytes.