Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anatoly Dritschilo is active.

Publication


Featured researches published by Anatoly Dritschilo.


American Journal of Pathology | 2012

ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells.

Xuefeng Liu; Virginie Ory; Sandra Chapman; Hang Yuan; Chris Albanese; Bhaskar Kallakury; Olga Timofeeva; Caitlin Nealon; Aleksandra Dakic; Vera Simic; Bassem R. Haddad; Johng S. Rhim; Anatoly Dritschilo; Anna T. Riegel; Alison A. McBride; Richard Schlegel

We demonstrate that a Rho kinase inhibitor (Y-27632), in combination with fibroblast feeder cells, induces normal and tumor epithelial cells from many tissues to proliferate indefinitely in vitro, without transduction of exogenous viral or cellular genes. Primary prostate and mammary cells, for example, are reprogrammed toward a basaloid, stem-like phenotype and form well-organized prostaspheres and mammospheres in Matrigel. However, in contrast to the selection of rare stem-like cells, the described growth conditions can generate 2 × 10(6) cells in 5 to 6 days from needle biopsies, and can generate cultures from cryopreserved tissue and from fewer than four viable cells. Continued cell proliferation is dependent on both feeder cells and Y-27632, and the conditionally reprogrammed cells (CRCs) retain a normal karyotype and remain nontumorigenic. This technique also efficiently establishes cell cultures from human and rodent tumors. For example, CRCs established from human prostate adenocarcinoma displayed instability of chromosome 13, proliferated abnormally in Matrigel, and formed tumors in mice with severe combined immunodeficiency. The ability to rapidly generate many tumor cells from small biopsy specimens and frozen tissue provides significant opportunities for cell-based diagnostics and therapeutics (including chemosensitivity testing) and greatly expands the value of biobanking. In addition, the CRC method allows for the genetic manipulation of epithelial cells ex vivo and their subsequent evaluation in vivo in the same host.


International Journal of Radiation Oncology Biology Physics | 1988

Radioresistant tumor cells are present in head and neck carcinomas that recur after radiotherapy

Ralph R. Weichselbaum; Michael A. Beckett; Jeffrey L. Schwartz; Anatoly Dritschilo

We determined the in vitro survival parameters of 14 human head and neck squamous cell carcinoma tumor cell lines cultured from patients who suffered local failure after a curative course of radiotherapy. The radiobiological parameters determined included D, D0, n, and surviving fractions at 100, 200, and 300 cGy. When compared to in vitro radiobiological parameters of tumor cells cultured from head and neck cancer patients prior to radiotherapy, human sarcoma cell lines derived from patients not receiving therapeutic radiation, normal human diploid fibroblasts or other human tumor cell lines reported in the literature, the human tumor cells derived from radiotherapy failures are radioresistant.


Oncogene | 1998

A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-κB

Su-Jae Lee; Alexandre Dimtchev; Martin F. Lavin; Anatoly Dritschilo; Mira Jung

The signaling pathway through which ionizing radiation induces NF-κB activation is not fully understood. IκB-α, an inhibitory protein of NF-κB mediates the activation of NF-κB in response to various stimuli, including cytokines, mitogens, oxidants and other stresses. We have now identified an ionizing radiation-induced signaling pathway that is independent of TNF-α. IκB-α degradation is rapid in response to TNF-α induction, but it is absent in response to ionizing radiation exposure in cells from individuals with ataxia-telangiectasia (AT). Overexpression of wild-type ATM, the product of the gene defective in AT patients, restores radiation-induced degradation of IκB-α. Furthermore, phosphorylation of IκB-α by immunoprecipitated ATM kinase is increased in control fibroblasts and transfected AT cells following ionizing radiation exposure. These data provide support for a novel ionizing radiation-induced signaling pathway for activation of NF-κB and a molecular basis for the sensitivity of AT patients to oxidative stresses.


Molecular Cancer Therapeutics | 2009

AMP-activated protein kinase promotes human prostate cancer cell growth and survival

Hyeon Ung Park; Simeng Suy; Malika Danner; Vernon Dailey; Ying Zhang; Heng-Hong Li; Daniel R. Hyduke; Brian T. Collins; Gregory Gagnon; Bhaskar Kallakury; Deepak Kumar; Milton L. Brown; Albert J. Fornace; Anatoly Dritschilo; Sean P. Collins

The molecular mechanisms underlying the development and progression of prostate cancer are poorly understood. AMP-activated protein kinase (AMPK) is a serine-threonine kinase that is activated in response to the hypoxic conditions found in human prostate cancers. In response to energy depletion, AMPK activation promotes metabolic changes to maintain cell proliferation and survival. Here, we report prevalent activation of AMPK in human prostate cancers and provide evidence that inhibition or depletion of AMPK leads to decreased cell proliferation and increased cell death. AMPK was highly activated in 40% of human prostate cancer specimens examined. Endogenous AMPK was active in both the androgen-sensitive LNCaP cells and the androgen-independent CWR22Rv1 human prostate cancer cells. Depletion of AMPK catalytic subunits by small interfering RNA or inhibition of AMPK activity with a small-molecule AMPK inhibitor (compound C) suppresses human prostate cancer cell proliferation. Apoptotic cell death was induced in LNCaP and CWR22Rv1 cells at compound C concentrations that inhibited AMPK activity. The evidence provided here is the first report that the activated AMPK pathway is involved in the growth and survival of human prostate cancer and offers novel potential targets for chemoprevention of human prostate cancer. [Mol Cancer Ther 2009;8(4):733–41]


Radiation Research | 2004

Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors.

Yin Zhang; Manfred Jung; Anatoly Dritschilo; Mira Jung

Abstract Zhang, Y., Jung, M., Dritschilo, A. and Jung, M. Enhancement of Radiation Sensitivity of Human Squamous Carcinoma Cells by Histone Deacetylase Inhibitor. Radiat. Res. 161, 667–674 (2004). Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents with potential for disruption of critical cellular processes in cancer cells. Transcriptional regulation, differentiation, cell cycle arrest, radiation sensitization, and apoptosis have been observed in response to exposure to HDAC inhibitors. In the present study, we observed that several potent HDAC inhibitors, including trichostatin A, suberoylanilide hydroxamic acid, M344 (an analogue of hydroxamic acid), and the cyclic tetrapeptide, depsipeptide (FR90228), modulate cellular responses to ionizing radiation in cells of two human squamous carcinoma lines (SQ-20B and SCC-35), previously characterized as intrinsically resistant to radiation. Also exposure to IC50 concentrations of these inhibitors, radiation sensitivities were enhanced in both cell lines. Depsipeptide exhibited the greatest effect on SQ-20B cells, decreasing D0 values from 2.62 Gy to 1.64 Gy. M344 was the most active drug in sensitizing SCC-35 cells, decreasing D0 values from 1.91 Gy to 1.21 Gy. The mechanisms underlying HDAC inhibitor-induced radiosensitization were further investigated by extending trichostatin A studies to assess cell cycle distributions and levels of apoptosis. Treatment of SQ-20B cells with radiosensitizing concentrations of trichostatin A resulted in cell cycle arrest in G1 phase (>70%) and inhibition of DNA synthesis. Contrary to previous reports, induction of apoptosis was very low and caspase 3 and 9 were not activated. Taken together, these results implicate G1 arrest and inhibition of DNA synthesis in the mechanisms underlying radiation sensitization by trichostatin A and support the use of HDAC inhibitors for targeting radioresistant cancers.


Journal of Biological Chemistry | 1999

Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase.

Gun D. Kim; Yung H. Choi; Alexandre Dimtchev; Sook J. Jeong; Anatoly Dritschilo; Mira Jung

The ATM gene is mutated in individuals with ataxia telangiectasia, a human genetic disease characterized by extreme sensitivity to radiation. The ATM protein acts as a sensor of radiation-induced cellular damage and contributes to cell cycle regulation, signal transduction, and DNA repair; however, the mechanisms underlying these functions of ATM remain largely unknown. Binding and immunoprecipitation assays have now shown that ATM interacts with the histone deacetylase HDAC1 both in vitro and in vivo, and that the extent of this association is increased after exposure of MRC5CV1 human fibroblasts to ionizing radiation. Histone deacetylase activity was also detected in immunoprecipitates prepared from these cells with antibodies to ATM, and this activity was blocked by the histone deacetylase inhibitor trichostatin A. These results suggest a previously unanticipated role for ATM in the modification of chromatin components in response to ionizing radiation.


The FASEB Journal | 1993

Modulation of doxorubicin resistance in multidrug-resistant cells by liposomes.

Alain Thierry; D Vigé; Steven S. Coughlin; J A Belli; Anatoly Dritschilo; Aquilur Rahman

In this study, we have confirmed the ability of liposome‐encapsulated doxorubicin to modulate drug resistance, as previously observed in CH LZ cells (Thierry et al., Cancer Commun. 1, 311‐316, 1989), in two human multidrug‐resistant (MDR) cell lines, the breast cancer MCF‐7/ADR cell line, and the ovarian carcinoma SKVLB cell line. This effect was specific to MDR cells, as liposomally encapsulated doxorubicin did not enhance cell sensitivity to the drug in the parental cell lines. Cytotoxicity assays demonstrated that empty liposomes in the presence of free doxorubicin (Dox) reversed resistance to the drug at a level that may be higher than that observed when liposome‐encapsulated Dox is used. This effect seems to be due to the high affinity of Dox for cardiolipin, one of the liposome components, which leads to the association of the drug and the cardiolipincontaining liposomes in the culture medium before entry into the cells. Neither pretreatment of empty liposomes before drug treatment nor combined incubation of vincristine and empty liposomes alter MDR in CH LZ cells, suggesting that the drug must be encapsulated or complexed to the liposomes to overcome MDR. Because MDR in CH LZ cells does not seem to be related to GSH level, MDR modulation by liposome‐encapsulated Dox apparently may not be effected by altering the GSH function. These results suggest that the enhancement of sensitivity of MDR cells using Dox encapsulated in liposomes or complexed with liposomes may be explained by an increase in cell drug incorporation and by an intracellular drug redistribution. Fluorescence confocal microscopy study indicated that Dox is transported and distributed mainly in intracytoplasmic vesicles in SKVLB and MCF‐7/ADR cells, whereas in parental cells the drug is located mainly in the nucleus. In addition, presentation of Dox in liposomes modifies the drug distribution pattern in MDR cells by partially shifting the drug to nuclear compartments. Thus, liposome‐associated Dox may bypass the vesicular drug transport in MDR cells, resulting in the enhancement of the drug biological activity.—Thierry, A. R., Vigé, D., Coughlin, S. S., Belli, J. A., Dritschilo, A., Rahman, A. Modulation of doxorubicin resistance in multidrug‐resistant cells by liposomes. FASEB J. 7: 572‐579; 1993.


Oncogene | 1999

Regulation of the human poly(ADP-ribose) polymerase promoter by the ETS transcription factor.

Viatcheslav A. Soldatenkov; Amador Albor; Bharvin Kr Patel; Roni Dreszer; Anatoly Dritschilo; Vicente Notario

Ewings sarcoma (EWS) cells accumulate elevated steady-state levels of poly (ADP-ribose) polymerase (PARP) mRNA and protein. To understand the molecular mechanisms underlying PARP upregulation, we cloned and analysed the 5′-flanking region of the PARP gene from EWS cells. Nucleotide sequence analysis demonstrated no variations in the PARP promoter region in EWS cells. The PARP promoter encompasses multiple binding motifs for the ETS transcription factor. We have also observed that there is a coordinated up-regulation of the expression of both PARP and ETS1, relative to cells of other human tumor types expressing lower levels of PARP. Transient co-expression of ETS1 in EWS cells resulted in a strong enhancement of PARP-promoter activity. The participation of ETS in the regulation of PARP gene expression was further demonstrated in EWS cells stably transfected with Ets1 antisense cDNA constructs. Antisense-mediated down-regulation of endogenous ETS1 resulted in the inhibition of PARP expression in EWS cells, and sensitized these cells to ionizing radiation. These data provide support for ETS regulation of PARP expression levels, and implicate ETS transcription factors in the radiation response of EWS cells.


Journal of Biological Chemistry | 2012

Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA

Olga Timofeeva; Sergey Chasovskikh; Irina Lonskaya; Nadya I. Tarasova; Lyuba Khavrutskii; Sergey G. Tarasov; Xueping Zhang; Valeriy R. Korostyshevskiy; Amrita K. Cheema; Lihua Zhang; Sivanesan Dakshanamurthy; Milton L. Brown; Anatoly Dritschilo

Background: Unphosphorylated STAT3 (U-STAT3) regulates gene expression, but the mechanisms of its DNA binding are not fully understood. Results: U-STAT3 binds to the same γ-activated sequence (GAS) DNA-binding site as phosphorylated STAT3. It also binds to AT-rich DNA structures. Conclusion: U-STAT3 regulates gene expression by binding to GAS and influencing chromatin organization. Significance: Our data provide an explanation of mechanisms of U-STAT3 binding to DNA. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.


Clinical Cancer Research | 2006

Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies.

Anatoly Dritschilo; Chao H Huang; Charles M. Rudin; John L. Marshall; Brian T. Collins; Jeanne L. Dul; Chuanbo Zhang; Deepak Kumar; Prafulla C. Gokhale; Ateeq Ahmad; Imran Ahmad; Jeffrey W Sherman; Usha Kasid

PURPOSE: Raf proteins are key elements of growth-related cellular signaling pathways and are a component of cancer cell resistance to radiation therapy. Antisense oligonucleotides to c-raf-1 permit highly selective inhibition of the gene product and offer a strategy for sensitizing cancer cells to radiation therapy. In this dose escalation study, we evaluated the safety of combined liposomal formulation of raf antisense oligonucleotide (LErafAON) and radiation therapy in patients with advanced malignancies. EXPERIMENTAL DESIGN: Patients with advanced solid tumors were treated with LErafAON in a phase I dose escalation study while receiving palliative radiation therapy. Drug-related and radiation-related toxicities were monitored. Pharmacokinetics and expression of c-raf-1 mRNA and Raf-1 protein were determined in peripheral blood mononuclear cells. RESULTS: Seventeen patients with palliative indications for radiation therapy were entered into this study. Thirteen patients received daily infusions of LErafAON and four received twice-weekly infusions. Radiation therapy was delivered in daily 300-cGy fractions over 2 weeks. Patients tolerated radiation, and no unexpected radiation-related side effects were observed. Drug-related reactions (grade > or =2), such as back pain, chills, dyspnea, fatigue, fever, flushing, and hypertension, were observed in most patients and were managed by premedication with corticosteroids and antihistamines. Serious adverse events occurred in five patients, including acute infusion-related symptoms, abnormal liver function tests, hypoxia, dehydration, diarrhea, esophagitis, fever, hypokalemia, pharyngitis, and tachypnea. Twelve of 17 patients were evaluable for tumor response at completion of treatment; four showed partial response, four showed stable disease, and four experienced progressive disease. The intact rafAON was detected in plasma for 30 minutes to several hours. Six patients with partial response or stable disease were evaluable for c-raf-1 mRNA and/or Raf-1 protein expression. Inhibition of c-raf-1 mRNA was observed in three of five patients. Raf-1 protein was inhibited in four of five patients. CONCLUSION: This is the first report of the combined modality treatment using antisense oligonucleotides with radiation therapy in patients with advanced cancer. A dose of 2.0 mg/kg of LErafAON administered twice weekly is tolerated with premedication and does not enhance radiation toxicity in patients. The observation of dose-dependent, infusion-related reactions has led to further modification of the liposomal composition for use in future clinical trials.

Collaboration


Dive into the Anatoly Dritschilo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mira Jung

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge