Mira Jung
Georgetown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mira Jung.
BioTechniques | 2004
Annika Spruessel; Garnet Steimann; Mira Jung; Sung A. Lee; Theresa Carr; Anne-Kristin Fentz; Joerg Spangenberg; Carsten Zornig; Hartmut Juhl; Kerstin David
The aim of this study was to determine the impact of ischemia on gene and protein expression profiles of healthy and malignant colon tissue and, thus, on screening studies for identification of molecular targets and diagnostic molecular patterns. Healthy and malignant colon tissue were snap-frozen at various time points (3-30 min) after colon resection. Gene and protein expression were determined by microarray (HG-U133A chips) and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology (CM10 chips, SAX2 chips, and IMAC3Ni chips), respectively. Real-time reverse transcription PCR (RT-PCR) was used for comparative measurement of expression of particular genes. Initial changes of gene and protein expression profiles were already observed 5-8 min after colon resection. Fifteen minutes after surgery, 10%-15% of molecules, and after 30 min, 20% of all detectable genes and proteins, respectively, differed significantly from the baseline values. Significant changes of expression were found in most functional groups. As confirmed by real-time RT-PCR, this included not only known hypoxia-related molecules (HIF-1 alpha, c-fos, HO-1) but also cytoskeletal genes (e.g., CK20) and tumor-associated antigens (e.g., CEA). In conclusion, preanalytical factors, such as tissue ischemia time, dramatically affect molecular data. Control of these variables is mandatory to obtain reliable data in screening programs for molecular targets and diagnostic molecular patterns.
Oncogene | 1998
Su-Jae Lee; Alexandre Dimtchev; Martin F. Lavin; Anatoly Dritschilo; Mira Jung
The signaling pathway through which ionizing radiation induces NF-κB activation is not fully understood. IκB-α, an inhibitory protein of NF-κB mediates the activation of NF-κB in response to various stimuli, including cytokines, mitogens, oxidants and other stresses. We have now identified an ionizing radiation-induced signaling pathway that is independent of TNF-α. IκB-α degradation is rapid in response to TNF-α induction, but it is absent in response to ionizing radiation exposure in cells from individuals with ataxia-telangiectasia (AT). Overexpression of wild-type ATM, the product of the gene defective in AT patients, restores radiation-induced degradation of IκB-α. Furthermore, phosphorylation of IκB-α by immunoprecipitated ATM kinase is increased in control fibroblasts and transfected AT cells following ionizing radiation exposure. These data provide support for a novel ionizing radiation-induced signaling pathway for activation of NF-κB and a molecular basis for the sensitivity of AT patients to oxidative stresses.
Radiation Research | 2004
Yin Zhang; Manfred Jung; Anatoly Dritschilo; Mira Jung
Abstract Zhang, Y., Jung, M., Dritschilo, A. and Jung, M. Enhancement of Radiation Sensitivity of Human Squamous Carcinoma Cells by Histone Deacetylase Inhibitor. Radiat. Res. 161, 667–674 (2004). Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents with potential for disruption of critical cellular processes in cancer cells. Transcriptional regulation, differentiation, cell cycle arrest, radiation sensitization, and apoptosis have been observed in response to exposure to HDAC inhibitors. In the present study, we observed that several potent HDAC inhibitors, including trichostatin A, suberoylanilide hydroxamic acid, M344 (an analogue of hydroxamic acid), and the cyclic tetrapeptide, depsipeptide (FR90228), modulate cellular responses to ionizing radiation in cells of two human squamous carcinoma lines (SQ-20B and SCC-35), previously characterized as intrinsically resistant to radiation. Also exposure to IC50 concentrations of these inhibitors, radiation sensitivities were enhanced in both cell lines. Depsipeptide exhibited the greatest effect on SQ-20B cells, decreasing D0 values from 2.62 Gy to 1.64 Gy. M344 was the most active drug in sensitizing SCC-35 cells, decreasing D0 values from 1.91 Gy to 1.21 Gy. The mechanisms underlying HDAC inhibitor-induced radiosensitization were further investigated by extending trichostatin A studies to assess cell cycle distributions and levels of apoptosis. Treatment of SQ-20B cells with radiosensitizing concentrations of trichostatin A resulted in cell cycle arrest in G1 phase (>70%) and inhibition of DNA synthesis. Contrary to previous reports, induction of apoptosis was very low and caspase 3 and 9 were not activated. Taken together, these results implicate G1 arrest and inhibition of DNA synthesis in the mechanisms underlying radiation sensitization by trichostatin A and support the use of HDAC inhibitors for targeting radioresistant cancers.
Journal of Biological Chemistry | 1999
Gun D. Kim; Yung H. Choi; Alexandre Dimtchev; Sook J. Jeong; Anatoly Dritschilo; Mira Jung
The ATM gene is mutated in individuals with ataxia telangiectasia, a human genetic disease characterized by extreme sensitivity to radiation. The ATM protein acts as a sensor of radiation-induced cellular damage and contributes to cell cycle regulation, signal transduction, and DNA repair; however, the mechanisms underlying these functions of ATM remain largely unknown. Binding and immunoprecipitation assays have now shown that ATM interacts with the histone deacetylase HDAC1 both in vitro and in vivo, and that the extent of this association is increased after exposure of MRC5CV1 human fibroblasts to ionizing radiation. Histone deacetylase activity was also detected in immunoprecipitates prepared from these cells with antibodies to ATM, and this activity was blocked by the histone deacetylase inhibitor trichostatin A. These results suggest a previously unanticipated role for ATM in the modification of chromatin components in response to ionizing radiation.
Molecular Cancer Therapeutics | 2007
Elena Eliseeva; Vassil Valkov; Manfred Jung; Mira Jung
Modification of proteins by histone acetyltransferases (HAT) or histone deacetylases plays an important role in the control of gene expression, and its dysregulation has been linked to malignant transformation and other diseases. Although histone deacetylase inhibitors have been extensively studied and several are currently in clinical trials, there is little information available on inhibitors of HATs (HATi). Starting from the natural product lead HATi anacardic acid, a series of 28 analogues was synthesized and investigated for HAT-inhibitory properties and effects on cancer cell growth. The compounds inhibited up to 95% HAT activity in vitro, and there was a clear correlation between their inhibitory potency and cytotoxicity toward a broad panel of cancer cells. Interestingly, all tested compounds were relatively nontoxic to nonmalignant human cell lines. Western blot analysis of MCF7 breast carcinoma cells treated with HATi showed significant reduction in acetylation levels of histone H4. To directly show effect of the new compounds on HAT activity in vivo, MCF7 cells were cotransfected with the p21 promoter fused to firefly luciferase and a full-length p300 acetyltransferase, and luciferase activity was determined following treatment with HATi. Significant inhibition of p300 activity was detected after treatment with all tested compounds except one. Effects of the new HATi on protein acetylation and HAT activity in vivo make them a suitable tool for discovery of molecular targets of HATs and, potentially, for development of new anticancer therapeutics. [Mol Cancer Ther 2007;6(9):2391–8]
Oncogene | 2003
Tai Young Kim; Hyun-Soon Jong; Sang-Hyun Song; Alexandre Dimtchev; Sook-Jung Jeong; Jung Weon Lee; Tae-You Kim; Noe Kyeong Kim; Mira Jung; Yung-Jue Bang
DLC-1 (deleted in liver cancer) gene is frequently deleted in hepatocellular carcinoma. However, little is known about the genetic status and the expression of this gene in gastric cancer. In this study, Northern and Southern analysis showed that seven of nine human gastric cancer cell lines did not express DLC-1 mRNA, but contained the DLC-1 gene. To identify the mechanism of the loss of DLC-1 mRNA expression in these cell lines, we investigated the methylation status of DLC-1 gene by using methylation-specific PCR (MSP) and Southern blot, and found that five of seven DLC-1 nonexpressing gastric cancer cell lines were methylated in the DLC-1 CpG island. Treatment with 5-aza-2′-deoxycytidine (5-Aza-dC) induced DLC-1 mRNA expression in the gastric cancer cell lines that have the methylated alleles. Studies using SNU-601 cell line with methylated DLC-1 alleles revealed that nearly all CpG sites within DLC-1 CpG island were methylated, and that the in vitro methylation of the DLC-1 promoter region is enough to repress DLC-1 mRNA expression, regardless of the presence of transcription factors capable of inducing this gene. In all, 29 of 97 (30%) primary gastric cancers were also shown to be methylated, demonstrating that methylation of the DLC-1 CpG island is not uncommon in gastric cancer. In addition, we demonstrated that DLC-1 mRNA expression was induced, and an increase in the level of acetylated H3 and H4 was detected by the treatment with trichostatin A (TSA) in two DLC-1 nonexpressing cell lines that have the unmethylated alleles. Taken together, the results of our study suggest that the transcriptional silencing of DLC-1, by epigenetic mechanism, may be involved in gastric carcinogenesis.
Experimental Neurology | 2013
You Me Sung; Taehee Lee; Hye-Jin Yoon; Amanda Marie DiBattista; Jung Min Song; Yoojin Sohn; Emily Isabella Moffat; R. Scott Turner; Mira Jung; Jungsu Kim; Hyang Sook Hoe
Histone deacetylase inhibitors (HDACIs) alter gene expression epigenetically by interfering with the normal functions of HDAC. Given their ability to decrease Aβ levels, HDACIs are a potential treatment for Alzheimers disease (AD). However, it is unclear how HDACIs alter Aβ levels. We developed two novel HDAC inhibitors with improved pharmacological properties, such as a longer half-life and greater penetration of the blood-brain barrier: mercaptoacetamide-based class II HDACI (coded as W2) and hydroxamide-based class I and IIHDACI (coded as I2) and investigated how they affect Aβ levels and cognition. HDACI W2 decreased Aβ40 and Aβ42 in vitro. HDACI I2 also decreased Aβ40, but not Aβ42. We systematically examined the molecular mechanisms by which HDACIs W2 and I2 can decrease Aβ levels. HDACI W2 decreased gene expression of γ-secretase components and increased the Aβ degradation enzyme Mmp2. Similarly, HDACI I2 decreased expression of β- and γ-secretase components and increased mRNA levels of Aβ degradation enzymes. HDACI W2 also significantly decreased Aβ levels and rescued learning and memory deficits in aged hAPP 3xTg AD mice. Furthermore, we found that the novel HDACI W2 decreased tau phosphorylation at Thr181, an effect previously unknown for HDACIs. Collectively, these data suggest that class II HDACls may serve as a novel therapeutic strategy for AD.
Radiation Research | 2007
Yin Zhang; Theresa Carr; Alexandre Dimtchev; Naghmeh Zaer; Anatoly Dritschilo; Mira Jung
Abstract Zhang, Y., Carr, T., Dimtchev, A., Zaer, N., Dritschilo, A. and Jung, M. Attenuated DNA Damage Repair by Trichostatin A through BRCA1 Suppression. Radiat. Res. 168, 115–124 (2007). Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and γ-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D0 = 1.63 Gy), to the control level (D0 = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.
Journal of Biological Chemistry | 2004
Robert E. Bakin; Mira Jung
Control of global histone acetylation status is largely governed by the opposing enzymatic activities of histone acetyltransferases and deacetylases (HDACs). HDACs were originally identified as modulators of nuclear histone acetylation status and have been linked to chromosomal condensation and subsequent gene repression. Accumulating evidence highlights HDAC modification of non-histone targets. Mitochondria were first characterized as intracellular organelles responsible for energy production through the coupling of oxidative phosphorylation to respiration. More recently, mitochondria have been implicated in programmed cell death whereby release of pro-apoptotic inner membrane space factors facilitates apoptotic progression. Here we describe the novel discovery that the nuclear encoded Class II human histone deacetylase HDAC7 localizes to the mitochondrial inner membrane space of prostate epithelial cells and exhibits cytoplasmic relocalization in response to initiation of the apoptotic cascade. These results highlight a previously unrecognized link between HDACs, mitochondria, and programmed cell death.
Journal of Chemical Information and Modeling | 2009
Hao Tang; Xiang S. Wang; Xi Ping Huang; Bryan L. Roth; Kyle V. Butler; Alan P. Kozikowski; Mira Jung; Alexander Tropsha
Inhibitors of histone deacetylases (HDACIs) have emerged as a new class of drugs for the treatment of human cancers and other diseases because of their effects on cell growth, differentiation, and apoptosis. In this study we have developed several quantitative structure-activity relationship (QSAR) models for 59 chemically diverse histone deacetylase class 1 (HDAC1) inhibitors. The variable selection k nearest neighbor (kNN) and support vector machines (SVM) QSAR modeling approaches using both MolconnZ and MOE chemical descriptors generated from two-dimensional rendering of compounds as chemical graphs have been employed. We have relied on a rigorous model development workflow including the division of the data set into training, test, and external sets and extensive internal and external validation. Highly predictive QSAR models were generated with leave-one-out cross-validated (LOO-CV) q2 and external R2 values as high as 0.80 and 0.87, respectively, using the kNN/MolconnZ approach and 0.93 and 0.87, respectively, using the SVM/MolconnZ approach. All validated QSAR models were employed concurrently for virtual screening (VS) of an in-house compound collection including 9.5 million molecules compiled from the ZINC7.0 database, the World Drug Index (WDI) database, the ASINEX Synergy libraries, and other commercial databases. VS resulted in 45 structurally unique consensus hits that were considered novel putative HDAC1 inhibitors. These computational hits had several novel structural features that were not present in the original data set. Four computational hits with novel scaffolds were tested experimentally, and three of them were confirmed active against HDAC1, with IC50 values for the most active compound of 1.00 microM. The fourth compound was later identified to be a selective inhibitor of HDAC6, a Class II HDAC. Moreover, two of the confirmed hits are marketed drugs, which could potentially facilitate their further development as anticancer agents. This study illustrates the power of the combined QSAR-VS method as a general approach for the effective identification of structurally novel bioactive compounds.