Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anchala Kumari is active.

Publication


Featured researches published by Anchala Kumari.


Journal of Cellular Biochemistry | 2018

Role of pncA gene mutations W68R and W68G in pyrazinamide resistance

Mansi Aggarwal; Aditi Singh; Sonam Grover; Bharati Pandey; Anchala Kumari; Abhinav Grover

Mycobacterium tuberculosis (Mtb) resistance toward anti‐tuberculosis drugs is a widespread problem. Pyrazinamide (PZA) is a first line antitubercular drug that kills semi‐dormant bacilli when converted into its activated form, that is, pyrazinoic acid (POA) by Pyrazinamidase (PZase) enzyme coded by pncA gene. In this study, we conducted several analyses on native and mutant structures (W68R, W68G) of PZase before and after docking with the PZA drug to explore the molecular mechanism behind PZA resistance caused due to pncA mutations. Structural changes caused by mutations were studied with respect to their effects on functionality of protein. Docking was performed to analyze the protein‐drug binding and comparative analysis was done to observe how the mutations affect drug binding affinity and binding site on protein. Native PZase protein was observed to have the maximum binding affinity in terms of docking score as well as shape complementarity in comparison to the mutant forms. Molecular dynamics simulation analyses showed that mutation in the 68th residue of protein results in a structural change at its active site which further affects the biological function of protein, that is, conversion of PZA to POA. Mutations in the protein thereby led to PZA resistance in the bacterium due to the inefficient binding.


Frontiers in Neuroscience | 2017

Conformational Ensembles of α-Synuclein Derived Peptide with Different Osmolytes from Temperature Replica Exchange Sampling

Salma Jamal; Anchala Kumari; Aditi Singh; Sukriti Goyal; Abhinav Grover

Intrinsically disordered proteins (IDP) are a class of proteins that do not have a stable three-dimensional structure and can adopt a range of conformations playing various vital functional role. Alpha-synuclein is one such IDP which can aggregate into toxic protofibrils and has been associated largely with Parkinsons disease (PD) along with other neurodegenerative diseases. Osmolytes are small organic compounds that can alter the environment around the proteins by acting as denaturants or protectants for the proteins. In the present study, we have conducted a series of replica exchange molecular dynamics simulations to explore the role of osmolytes, urea which is a denaturant and TMAO (trimethylamine N-oxide), a protecting osmolyte, in aggregation and conformations of the synuclein peptide. We observed that both the osmolytes have significantly distinct impacts on the peptide and led to transitions of the conformations of the peptide from one state to other. Our findings highlighted that urea attenuated peptide aggregation and resulted in the formation of extended peptide structures whereas TMAO led to compact and folded forms of the peptide.


Scientific Reports | 2018

Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region

Bharati Pandey; Sonam Grover; Sukriti Goyal; Anchala Kumari; Aditi Singh; Salma Jamal; Jagdeep Kaur; Abhinav Grover

The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.


Chemical Biology & Drug Design | 2018

Insight into the inhibitor discrimination by FLT3 F691L

Sharad Verma; Aditi Singh; Anchala Kumari; Bharati Pandey; Salma Jamal; Sukriti Goyal; Siddharth Sinha; Abhinav Grover

Fms‐like tyrosine kinase 3 (FLT3) belongs to the receptor tyrosine kinase family and expressed in hematopoietic progenitor cells. FLT3 gene mutations are reported in ~30% of acute myeloid leukemia cases. FLT3 kinase domain mutation F691L is one of the common causes of acquired resistance to the FLT3 inhibitors including quizartinib. MZH29 and crenolanib were previously reported to inhibit FLT3 F691L. However, crenolanib was reported for the moderate inhibition. We found that Glu661and Asp829 were the most significant residues to target the FLT3 F691L which contribute most significantly to the binding energy with MZH29 and crenolanib. These interactions were found absent with quizartinib. Further free energy landscape analysis revealed that FLT3 F691L bound to MZH29 and crenolanib was more stable as compared to quizartinib.


Journal of Receptors and Signal Transduction | 2017

Natural polyphenolic inhibitors against the antiapoptotic BCL-2

Sharad Verma; Aditi Singh; Anchala Kumari; Chetna Tyagi; Sukriti Goyal; Salma Jamal; Abhinav Grover

Abstract The apoptotic mechanism is regulated by the BCL-2 family of proteins, such as BCL-2 or Bcl-xL, which block apoptosis while Bad, Bak, Bax, Bid, Bim or Hrk induce apoptosis. The overexpression of BCL-2 was found to be related to the progression of cancer and also providing resistance towards chemotherapeutic treatments. In the present study, we found that all polyphenols (apigenin, fisetin, galangin and luteolin) bind to the hydrophobic groove of BCL-2 and the interaction is stable throughout MD simulation run. Luteolin was found to bind with highest negative binding energy and thus, claimed highest potency towards BCL-2 inhibition followed by fisetin. The hydrophobic interactions were found to be critical for stable complex formation as revealed by the vdW energy and ligplot analysis. Finally, on the basis of data obtained during the study, it can be concluded that these polyphenols have the potential to be used as lead molecules for BCL-2 inhibition.


F1000Research | 2017

In silico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus

Jaspreet Jain; Anchala Kumari; Pallavi Somvanshi; Abhinav Grover; Somnath Pai; Sujatha Sunil

Background: Chikungunya fever presents as a high-grade fever during its acute febrile phase and can be prolonged for months as chronic arthritis in affected individuals. Currently, there are no effective drugs or vaccines against this virus. The present study was undertaken to evaluate protein-ligand interactions of all chikungunya virus (CHIKV) proteins with natural compounds from a MolBase library in order to identify potential inhibitors of CHIKV. Methods: Virtual screening of the natural compound library against four non-structural and five structural proteins of CHIKV was performed. Homology models of the viral proteins with unknown structures were created and energy minimized by molecular dynamic simulations. Molecular docking was performed to identify the potential inhibitors for CHIKV. The absorption, distribution, metabolism and excretion (ADME) toxicity parameters for the potential inhibitors were predicted for further prioritization of the compounds. Results: Our analysis predicted three compounds, Catechin-5-O-gallate, Rosmarinic acid and Arjungenin, to interact with CHIKV proteins; two (Catechin-5-O-gallate and Rosmarinic acid) with capsid protein, and one (Arjungenin) with the E3. Conclusion: The compounds identified show promise as potential antivirals, but further in vitro studies are required to test their efficacy against CHIKV.


Gene | 2017

Dissecting the role of mutations in chymase inhibition: Free energy and decomposition analysis

Sharad Verma; Aditi Singh; Anchala Kumari; Sukriti Goyal; Salma Jamal; Siddharth Sinha; Abhinav Grover

Chymase enzyme abundantly found in secretory granules of mast cells and catalyzes the hydrolysis of peptide bonds to generate angiotensin II via hydrolysis of angiotensin I and also activates transforming growth factor-b and MMP-9. MMP-9 and TGF-b have significant role in tissue inflammation and fibrosis. In present study, we investigated that Lys192Met mutation leads to a higher loss in binding energy of inhibitors than mutation Arg143Gln in chymase. The energy decomposition revealed that the contributing residues are almost same in all the forms with some change in energy value. All the results pointing that arginine and lysine residues of chymase play the most significant role in inhibitor binding revealed by energy decomposition. The Lys40, Arg90, Lys192 and Arg217 are found to be most prominent residues in two different inhibitor systems but the role of other lysine and arginine also important as they also have significant contribution in the total binding energy.


PLOS ONE | 2018

Structural investigations on mechanism of lapatinib resistance caused by HER-2 mutants

Sharad Verma; Sukriti Goyal; Anchala Kumari; Aditi Singh; Salma Jamal; Abhinav Grover

HER-2 belongs to the human epidermal growth factor receptor (HER) family. Via different signal transduction pathways, HER-2 regulates normal cell proliferation, survival, and differentiation. Recently, it was reported that MCF10A, BT474, and MDA-MB-231 cells bearing the HER2 K753E mutation were resistant to lapatinib. Present study revealed that HER-2 mutant K753E showed some contrasting behaviour as compared to wild, L768S and V773L HER-2 in complex with lapatinib while similar to previously known lapatinib resistant L755S HER-2 mutant. Lapatinib showed stable but reverse orientation in binding site of K753E and the highest binding energy among studied HER2-lapatinib complexes but slightly lesser than L755S mutant. Results indicate that K753E has similar profile as L755S mutant for lapatinib. The interacting residues were also found different from other three studied forms as revealed by free energy decomposition and ligplot analysis.


Journal of Biomolecular Structure & Dynamics | 2018

HHV-5 epitope: a potential vaccine candidate with high antigenicity and large coverage

Neeraj Kumar; Aditi Singh; Sonam Grover; Anchala Kumari; Pawan K. Dhar; Ramesh Chandra; Abhinav Grover

Abstract Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope’s interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope ‘LVAIAVVII’ with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope ‘ILVAIAVVIITYLI’. Resulting epitope was found to have consistent interaction with TLR2 during long term (100 ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population. Communicated by Ramaswamy H. Sarma


Gene | 2018

Wild-type catalase peroxidase vs G279D mutant type: Molecular basis of Isoniazid drug resistance in Mycobacterium tuberculosis

Aishwarya Singh; Aditi Singh; Sonam Grover; Bharati Pandey; Anchala Kumari; Abhinav Grover

Mycobacterium tuberculosis katG gene is responsible for production of an enzyme catalase peroxidase that peroxidises and activates the prodrug Isoniazid (INH), a first-line antitubercular agent. INH interacts with catalase peroxidase enzyme within its heme pocket and gets converted to an active form. Mutations occurring in katG gene are often linked to reduced conversion rates for INH. This study is focussed on one such mutation occurring at residue 279, where glycine often mutates to aspartic acid (G279D). In the present study, several structural analyses were performed to study the effect of this mutation on functionality of KatG protein. On comparison, mutant protein exhibited a lower docking score, smaller binding cavity and reduced affinity towards INH. Molecular dynamics analysis revealed the mutant to be more rigid and less compact than the native protein. Essential dynamics analysis determined correlated motions of residues within the protein structure. G279D mutant was found to have many residues that showed related motions and an undesirable effect on the functionality of protein.

Collaboration


Dive into the Anchala Kumari's collaboration.

Top Co-Authors

Avatar

Abhinav Grover

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharad Verma

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Sonam Grover

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aishwarya Singh

Amity Institute of Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Chetna Tyagi

Jawaharlal Nehru University

View shared research outputs
Researchain Logo
Decentralizing Knowledge