Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ursula Lütz-Meindl is active.

Publication


Featured researches published by Ursula Lütz-Meindl.


Journal of Experimental Botany | 2009

Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata

Matthias Affenzeller; Anza Darehshouri; Ancuela Andosch; Cornelius Lütz; Ursula Lütz-Meindl

Programmed cell death (PCD) is a key element in normal plant growth and development which may also be induced by various abiotic and biotic stress factors including salt stress. In the present study, morphological, biochemical, and physiological responses of the theoretically immortal unicellular freshwater green alga Micrasterias denticulata were examined after salt (200 mM NaCl or 200 mM KCl) and osmotic stress induced by iso-osmotic sorbitol. KCl caused morphological changes such as cytoplasmic vacuolization, extreme deformation of mitochondria, and ultrastructural changes of Golgi and ER. However, prolonged salt stress (24 h) led to the degradation of organelles by autophagy, a special form of PCD, both in NaCl- and KCl-treated cells. This was indicated by the enclosure of organelles by ER-derived double membranes. DNA of NaCl- and KCl-stressed cells but not of sorbitol-treated cells showed a ladder-like pattern on agarose gel, which means that the ionic rather than the osmotic component of salt stress leads to the activation of the responsible endonuclease. DNA laddering during salt stress could be abrogated by addition of Zn2+. Neither cytochrome c release from mitochondria nor increase in caspase-3-like activity occurred after salt stress. Reactive oxygen species could be detected within 5 min after the onset of salt and osmotic stress. Respiration, photosynthetic activity, and pigment composition indicated an active metabolism which supports programmed rather than necrotic cell death in Micrasterias after salt stress.


European Journal of Phycology | 2005

Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis

Daniel Remias; Ursula Lütz-Meindl; Cornelius Lütz

Snow algae inhabit most of the cold regions worldwide, where long-lasting snow fields are common. The ecophysiology of snow algae has been studied intensively in North America and occasionally in polar regions. In the European Alps, the systematics of snow algae have been studied mainly by light microscopy. We studied temperature and light-dependence of photosynthesis, and plastid and extraplastid red pigment composition of red snow algae (Chlamydomonas nivalis) from snow patches in the high Alps of Austria. Both photosynthetic and respiratory data support the cryophilic adaptation of snow algal cells, but C. nivalis produced oxygen without any inhibition at temperatures up to 20°C and maintained this for 1 h, at irradiances up to 1800 µmol m−2s−1. Chlorophyll and primary carotenoid pigment composition was similar to that found in most other Chlorophyta. Additionally, large amounts of free and esterified astaxanthin were located in cytoplasmic lipid globules. Light and electron microscopy showed that the cell walls were frequently covered with tightly bound inorganic particles. Occasionally fungus- or bacteria-like structures were attached to the wall. The typical adult cell contained a single central chloroplast. Cytoplasmic structures were often difficult to resolve optically, as densely packed peripheral lipid globules, containing secondary carotenoids, occupied most of the cell volume. These pigments may shield the chloroplast from high irradiation (thus reducing the risk of photoinhibition) and may also be a potential carbon source during unfavourable climate conditions or the formation of daughter cells.


Journal of Biological Chemistry | 2011

Down-regulation of UDP-glucuronic Acid Biosynthesis Leads to Swollen Plant Cell Walls and Severe Developmental Defects Associated with Changes in Pectic Polysaccharides

Rebecca Reboul; Claudia Geserick; Martin Pabst; Beat Frey; Doris Wittmann; Ursula Lütz-Meindl; Renaud Léonard; Raimund Tenhaken

Background: Arabidopsis plants with a knock-out in UDP-glucose dehydrogenase provide less nucleotide sugars for cell wall biosynthesis. Results: Mutants with reduced UDP-glucuronic acid show developmental defects and changes in the pectic network. Conclusion: Pectins are important for plant cell walls. Alternative pathways to UDP-glucuronic acid are unable to compensate the mutation and limited by the inositol supply. Significance: Pectic polymers are more important for cell wall integrity and development than previously thought. UDP-glucose dehydrogenase (UGD) plays a key role in the nucleotide sugar biosynthetic pathway, as its product UDP-glucuronic acid is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues found in the cell wall. In this study we characterize an Arabidopsis thaliana double mutant ugd2,3 that lacks two of the four UGD isoforms. This mutant was obtained from a cross of ugd2 and ugd3 single mutants, which do not show phenotypical differences compared with the WT. In contrast, ugd2,3 has a strong dwarfed phenotype and often develops seedlings with severe root defects suggesting that the UGD2 and UGD3 isoforms act in concert. Differences in its cell wall composition in comparison to the WT were determined using biochemical methods indicating a significant reduction in arabinose, xylose, apiose, and galacturonic acid residues. Xyloglucan is less substituted with xylose, and pectins have a reduced amount of arabinan side chains. In particular, the amount of the apiose containing side chains A and B of rhamnogalacturonan II is strongly reduced, resulting in a swollen cell wall. The alternative pathway to UDP-glucuronic acid with the key enzyme myo-inositol oxygenase is not up-regulated in ugd2,3. The pathway also does not complement the ugd2,3 mutation, likely because the supply of myo-inositol is limited. Taken together, the presented data underline the importance of UDP GlcA for plant primary cell wall formation.


Journal of Phycology | 2008

OCCURRENCE AND CHARACTERIZATION OF ARABINOGALACTAN-LIKE PROTEINS AND HEMICELLULOSES IN MICRASTERIAS (STREPTOPHYTA)1

Magdalena Eder; Raimund Tenhaken; Azeddine Driouich; Ursula Lütz-Meindl

The cell wall of the green alga Micrasterias denticulata Bréb. ex Ralfs (Desmidiaceae, Zygnematophyceae, Streptophyta) was investigated to obtain information on the composition of component polysaccharides and proteoglycans to allow comparison with higher plants and to understand cell wall functions during development. Various epitopes currently assigned to arabinogalactan‐proteins (AGPs) of higher plants could be detected in Micrasterias by immuno TEM and immunofluorescence methods, but the walls did not bind the β‐d‐glycosyl‐Yariv (β‐GlcY) reagent. Secretory vesicles and the primary wall were labeled by antibodies against AGPs (JIM8, JIM13, JIM14). Dot and Western blot experiments indicated a proteoglycan nature of the epitopes recognized, which consisted of galactose and xylose as major sugars by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Epitopes of alkali‐soluble polysaccharides assigned to noncellulosic polysaccharides in higher plants could be detected and located in the wall during its formation. The polyclonal anti‐xyloglucan (anti‐XG) antibody labeled primary and secondary wall of Micrasterias, whereas the monoclonal antibody CCRC‐M1, directed against the fucose/galactose side chain of xyloglucan (XyG), did not recognize any structures. Labeling by anti‐XG antibody at the trans‐sites of the dictyosomes and at wall material containing vesicles indicated that secretion of the epitopes occurred similar to higher plants. The presence of (1→3, 1→4)‐β‐glucan (mixed linked glucan) in the secondary cell wall but not in the primary cell wall of Micrasterias could be demonstrated by an antibody recognizing this glucan type, whereas (1→3)‐β‐glucan (callose) could not be detected. The analytical results revealed that alkali‐soluble polysaccharides in the secondary wall of Micrasterias consist mostly of (1→3, 1→4)‐β‐d‐glucan.


Journal of Plant Physiology | 2012

A freshwater green alga under cadmium stress: Ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias

Ancuela Andosch; Matthias Affenzeller; Cornelius Lütz; Ursula Lütz-Meindl

Cadmium is a highly toxic heavy metal pollutant arising mainly from increasing industrial disposal of electronic components. Due to its high solubility it easily enters soil and aquatic environments. Via its similarity to calcium it may interfere with different kinds of Ca dependent metabolic or developmental processes in biological systems. In the present study we investigate primary cell physiological, morphological and ultrastructural responses of Cd on the unicellular freshwater green alga Micrasterias which has served as a cell biological model system since many years and has proved to be highly sensitive to any kind of abiotic stress. Our results provide evidence that the severe Cd effects in Micrasterias such as unidirectional disintegration of dictyosomes, occurrence of autophagy, decline in photosystem II activity and oxygen production as well as marked structural damage of the chloroplast are based on a disturbance of Ca homeostasis probably by displacement of Ca by Cd. This is indicated by the fact that physiological and structural cadmium effects could be prevented in Micrasterias by pre-treatment with Ca. Additionally, thapsigargin an inhibitor of animal and plant Ca(2+)-ATPase mimicked the adverse Cd induced morphological and functional effects on dictyosomes. Recovery experiments indicated rapid repair mechanisms after Cd stress.


Journal of Plant Physiology | 2014

Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions

Stefanie Volland; Elisabeth Bayer; Verena Baumgartner; Ancuela Andosch; Cornelius Lütz; Evelyn Sima; Ursula Lütz-Meindl

Recent studies have shown that metals such as copper, zinc, aluminum, cadmium, chromium, iron and lead cause severe dose-dependent disturbances in growth, morphogenesis, photosynthetic and respiratory activity as well as on ultrastructure and function of organelles in the algal model system Micrasterias denticulata (Volland et al., 2011, 2012; Andosch et al., 2012). In the present investigation we focus on amelioration of these adverse effects of cadmium, chromium and lead by supplying the cells with different antioxidants and essential micronutrients to obtain insight into metal uptake mechanisms and subcellular metal targets. This seems particularly interesting as Micrasterias is adapted to extremely low-concentrated, oligotrophic conditions in its natural bog environment. The divalent ions of iron, zinc and calcium were able to diminish the effects of the metals cadmium, chromium and lead on Micrasterias. Iron showed most ameliorating effects on cadmium and chromium in short- and long-term treatments and improved cell morphogenesis, ultrastructure, cell division rates and photosynthesis. Analytical transmission electron microscopic (TEM) methods (electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI)) revealed that chromium uptake was decreased when Micrasterias cells were pre-treated with iron, which resulted in no longer detectable intracellular chromium accumulations. Zinc rescued the detrimental effects of chromium on net-photosynthesis, respiration rates and electron transport in PS II. Calcium and gadolinium were able to almost completely compensate the inhibiting effects of lead and cadmium on cell morphogenesis after mitosis, respectively. These results indicate that cadmium is taken up by calcium and iron transporters, whereas chromium appears to enter the algae cells via iron and zinc carriers. It was shown that lead is not taken up into Micrasterias at all but exerts its adverse effects on cell growth by substituting cell wall bound calcium. The antioxidants salicylic acid, ascorbic acid and glutathione were not able to ameliorate any of the investigated metal effects on the green alga Micrasterias when added to the culture medium.


Aquatic Toxicology | 2012

Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias.

Stefanie Volland; Cornelius Lütz; Bernhard Michalke; Ursula Lütz-Meindl

Highlights ► Chromium VI severely affects cell growth, ultrastructure and photosynthesis. ► Micrasterias deposits Cr in bag like structures as Cr–iron–oxygen compound. ► Increase in Cr content leads to a depletion of intracellular iron levels. ► Cr detoxification possibly involves glutathione.


Journal of Phycology | 2004

ANALYSIS OF MUCILAGE SECRETION AND EXCRETION IN MICRASTERIAS (CHLOROPHYTA) BY MEANS OF IMMUNOELECTRON MICROSCOPY AND DIGITAL TIME LAPSE VIDEO MICROSCOPY

Anke Oertel; Nicole Aichinger; Romana Hochreiter; Josef Thalhamer; Ursula Lütz-Meindl

Two different, independent, and alternative modes of mucilage excretion were found in the unicellular green alga Micrasterias denticulata Bréb. under constant culture conditions. The cells were capable of either excreting mucilage over all their cell surface or they extruded mucilage from one of their polar ends, which enabled directed movement such as photoorientation or escape from unfavorable environmental conditions. By means of a polyclonal antibody raised against Micrasterias mucilage, the secretory pathway of Golgi derived mucilage vesicles from their origin to their discharge was analyzed by means of conventional and energy filtering TEM. Depending on the stage of the cell cycle, mucilage vesicles were subjected to maturation processes. This may occur either after they have been pinched off from the dictyosomes (e.g. during cell growth) or when still connected to trans‐Golgi cisternae, as in the case of interphase cells. Only fully grown mature vesicles contained mucilage in its final composition as indicated by antibody labeling. After fusion of mucilage vesicles with vacuoles, no immunolabeling was found in vacuoles, indicating that the vesicle content was digested. Mucilage vesicles fused with the plasma membrane in areas of cell wall pores but were also able to excrete mucilage at any site directly through the respective cell wall layer. This result disproves earlier assumptions that the pore apparatus in desmids are the only mucilage excreting areas at the cell surface. Both mechanisms, excretion through the pores and through the cell wall, lead to formation of mucilage envelopes covering the entire cell surface.


Protoplasma | 2010

Physiological, biochemical, and ultrastructural responses of the green macroalga Urospora penicilliformis from Arctic Spitsbergen to UV radiation.

Michael Y. Roleda; Ursula Lütz-Meindl; Christian Wiencke; Cornelius Lütz

Exposure of the filamentous turf green alga Urospora penicilliformis to ambient and artificial ultraviolet radiation (UVR) revealed a considerable resilient species. This explains the ability of this alga to thrive in the middle–upper intertidal zones of the Arctic sea where it is periodically exposed to environmental extremes. A transient UVR effect on photosynthesis under photosynthetically active radiation (PAR) + UV-A and PAR + UV-A + UV-B was found, but dynamic recovery of photoinhibition was observed immediately after reduction of the photon fluence rate of PAR in the absence or presence of background UVR under laboratory and natural solar radiation, respectively. Chlorophylls, carotenoids, and xanthophyll cycle pigments (violaxanthin, antheraxanthin, and zeaxanthin) concentrations were not significantly different between freshly collected samples and filaments exposed to additional laboratory radiation treatment. The ultrastructure of the U. penicilliformis gametophytes showed that the cells are well adapted to UVR. No significant ultrastructural alterations were observed in filaments exposed to different spectral irradiance in the laboratory compared to in situ acclimated specimen. The antioxidant α-tocopherol was detected in minute quantity while the search for flavonoid-like compounds was negative. Other UV screening strategies or certain genetically fixed physiological protective mechanism could be operating in this species responsible for their occurrence in higher shoreline and ecological success. Further molecular and biochemical studies are needed to elucidate the stress resistance in this turf alga. There is an indication that the extremely thick cell wall of U. penicilliformis gametophytes covered with mucilage sheath and dense layer of mineral depositions may provide a shield against unfavorable environmental conditions in general and against UVR in particular.


Protoplasma | 2010

Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus

Magdalena Eder; Ursula Lütz-Meindl

The unicellular, simply shaped desmid Netrium digitus inhabiting acid bog ponds grows in two phases. Prior to division, the cell elongates at its central zone, whereas in a second phase, polar tip growth occurs. Electron microscopy demonstrates that Netrium is surrounded by a morphologically homogeneous cell wall, which lacks pores. Immunocytochemical and biochemical analyses give insight into physical wall properties and, thus, into adaptation to the extreme environment. The monoclonal antibodies JIM5 and JIM7 directed against pectic epitopes with different degrees of esterification label preferentially growing wall zones in Netrium. In contrast, 2F4 marks the cell wall only after experimental de-esterification. Electron energy loss spectroscopy reveals Ca-binding capacities of pectins and gives indirect evidence for the degree of their esterification. An antibody raised against Netrium mucilage is not only specific to mucilage but also recognizes wall components in transmission electron microscopy and dot blots. These results indicate a smooth transition between mucilage and the cell wall in Netrium.

Collaboration


Dive into the Ursula Lütz-Meindl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Peer

University of Salzburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge