Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Felipe Rodrigues is active.

Publication


Featured researches published by André Felipe Rodrigues.


International Journal of Developmental Neuroscience | 2016

Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: Interplay of these factors changes these effects.

Danusa Mar Arcego; Rachel Krolow; Carine Lampert; Ana Paula Toniazzo; Carolina Berlitz; Camilla Lazzaretti; Felipe Schmitz; André Felipe Rodrigues; Angela Terezinha de Souza Wyse; Carla Dalmaz

Environmental factors, like early exposure to stressors or high caloric diets, can alter the early programming of central nervous system, leading to long‐term effects on cognitive function, increased vulnerability to cognitive decline and development of psychopathologies later in life. The interaction between these factors and their combined effects on brain structure and function are still not completely understood. In this study, we evaluated long‐term effects of social isolation in the prepubertal period, with or without chronic high fat diet access, on memory and on neurochemical markers in the prefrontal cortex of rats. We observed that early social isolation led to impairment in short‐term and working memory in adulthood, and to reductions of Na+,K+‐ATPase activity and the immunocontent of phospho‐AKT, in prefrontal cortex. Chronic exposure to a high fat diet impaired short‐term memory (object recognition), and decreased BDNF levels in that same brain area. Remarkably, the association of social isolation with chronic high fat diet rescued the memory impairment on the object recognition test, as well as the changes in BDNF levels, Na+,K+‐ATPase activity, MAPK, AKT and phospho‐AKT to levels similar to the control‐chow group. In summary, these findings showed that a brief social isolation period and access to a high fat diet during a sensitive developmental period might cause memory deficits in adulthood. On the other hand, the interplay between isolation and high fat diet access caused a different brain programming, preventing some of the effects observed when these factors are separately applied.


Metabolic Brain Disease | 2015

Erratum to: Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

Juliana Lenzi; André Felipe Rodrigues; Adriana de Sousa Rós; Amanda Blanski de Castro; Daniela Delwing de Lima; Débora Delwing Dal Magro; Ana Lúcia Bertarello Zeni

Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.


Cell Biochemistry and Function | 2014

Hypoxanthine induces oxidative stress in kidney of rats: protective effect of vitamins E plus C and allopurinol

André Felipe Rodrigues; Roberto Roecker; Gustavo M. Junges; Daniela Delwing de Lima; José Geraldo Pereira da Cruz; Angela Terezinha de Souza Wyse; Débora Delwing Dal Magro

In the present study, we investigated the in vitro effect of hypoxanthine on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase, as well as on thiobarbituric‐acid‐reactive substances (TBA‐RS), in the renal cortex and medulla of rats. Results showed that hypoxanthine, at a concentration of 10.0 μM, enhanced the activities of CAT and SOD in the renal cortex of 15‐, 30‐ and 60‐day‐old rats, enhanced SOD activity in the renal medulla of 60‐day‐old rats and enhanced TBA‐RS levels in the renal medulla of 30‐day‐old rats, as compared with controls. Furthermore, we also verified the influence of allopurinol (an inhibitor of xanthine oxidase), as well as of the antioxidants, trolox and ascorbic acid on the effects elicited by hypoxanthine on the parameters tested. Allopurinol and/or administration of antioxidants prevented most alterations caused by hypoxanthine in the oxidative stress parameters evaluated. Data suggest that hypoxanthine alters antioxidant defences and induces lipid peroxidation in the kidney of rats; however, in the presence of allopurinol and antioxidants, some of these alterations in oxidative stress were prevented. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by hypoxanthine. Copyright


Biomedicine & Pharmacotherapy | 2016

Protective effect of green tea extract against proline-induced oxidative damage in the rat kidney.

Débora Delwing Dal Magro; Roberto Roecker; Gustavo M. Junges; André Felipe Rodrigues; Daniela Delwing de Lima; José Geraldo Pereira da Cruz; Angela Terezinha de Souza Wyse; Heloisa da Silva Pitz; Ana Lúcia Bertarello Zeni

We investigated, in vivo (acute and chronic), the effects of proline on thiobarbituric acid-reactive substances (TBA-RS) and on the activities of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in renal tissues (cortex and medulla) of rats. For acute administration, 29-day-old rats received a single subcutaneous injection of proline (18.2μmol/g body weight) or an equivalent volume of 0.9% saline solution and were sacrificed 1h later. For chronic treatment, proline was injected subcutaneously in the rats twice a day from the 6th to the 28th day of age, and the animals were killed 12h after the last injection. The results showed that acute administration of proline enhanced CAT, SOD and GSH-Px activities, as well as, TBARS in the cortex and decreased CAT activity in the medulla, while chronic treatment increased the activities of SOD in the cortex and increased CAT, SOD and GSH-Px in the medulla of rats. Furthermore, the green tea extract treatment for one week or from the 6th to the 28th day of age prevented the alterations caused by acute and chronic, respectively, proline administration. Herein, we demonstrated that proline alters antioxidant defenses and induces lipid peroxidation in the kidney of rats and the green tea extract was capable to counteract the proline-induced alterations.


Journal of Biochemical and Molecular Toxicology | 2016

Acute Administration of Diazepam Provokes Redox Homeostasis Imbalance in the Rat Brain: Prevention by Simvastatin

Guilherme André Eger; Vinícius Vialle Ferreira; Camila Ribeiro Batista; Henrique LuisPetrek Bonde; Daniela Delwing de Lima; André Felipe Rodrigues; José Geraldo Pereira da Cruz; Débora Delwing Dal Magro

We investigated the effects of acute diazepam (DZP) administration on thiobarbituric acid‐reactive substance (TBARS) levels, protein carbonyl content, and on the activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in the brain of rats. Additionally, we investigated the antioxidant role of chronic pretreatment with simvastatin on the effects provoked by DZP. Simvastatin was administered (1 or 10 mg/kg by oral gavage) for 30 days. On the 30th day of treatment, groups were randomized and DZP was administered (0.5 or 1.0 mg/kg by intraperitoneal injection). Control groups received saline. Results showed that DZP enhanced TBARS levels and protein carbonyl content and altered enzymatic activity in the brain of rats. Simvastatin prevented most of the alterations caused by DZP on the oxidative stress parameters. Data indicate that DZP administration causes an oxidative imbalance in the brain areas studied; however, in the presence of simvastatin, some of these alterations in oxidative stress were prevented.


International Journal of Developmental Neuroscience | 2016

Intracerebroventricular D-galactose administration impairs memory and alters activity and expression of acetylcholinesterase in the rat.

André Felipe Rodrigues; Helena Biasibetti; Bruna Stela Zanotto; Eduardo Farias Sanches; Paula Pierozan; Felipe Schmitz; Mariana Migliorini Parisi; Florencia M. Barbé-Tuana; Carlos Alexandre Netto; Angela Terezinha de Souza Wyse

Tissue accumulation of galactose is a hallmark in classical galactosemia. Cognitive deficit is a symptom of this disease which is poorly understood. The aim of this study was to investigate the effects of intracerebroventricular administration of galactose on memory (inhibitory avoidance and novel object recognition tasks) of adult rats. We also investigated the effects of galactose on acetylcholinesterase (AChE) activity, immunocontent and gene expression in hippocampus and cerebral cortex. Wistar rats received a single injection of galactose (4 mM) or saline (control). For behavioral parameters, galactose was injected 1 h or 24 h previously to the testing. For biochemical assessment, animals were decapitated 1 h, 3 h or 24 h after galactose or saline injection; hippocampus and cerebral cortex were dissected. Results showed that galactose impairs the memory formation process in aversive memory (inhibitory avoidance task) and recognition memory (novel object recognition task) in rats. The activity of AChE was increased, whereas the gene expression of this enzyme was decreased in hippocampus, but not in cerebral cortex. These findings suggest that these changes in AChE may, at least in part, to lead to memory impairment caused by galactose. Taken together, our results can help understand the etiopathology of classical galactosemia.


International Journal of Experimental Pathology | 2015

Gestational hypermethioninaemia alters oxidative/nitrative status in skeletal muscle and biomarkers of muscular injury and inflammation in serum of rat offspring

Bruna M. Schweinberger; Elias Turcatel; André Felipe Rodrigues; Angela Terezinha de Souza Wyse

In this study we evaluated oxidative/nitrative stress parameters (reactive oxygen species production, lipid peroxidation, sulfhydryl content, superoxide dismutase, catalase and nitrite levels), as well as total protein content in the gastrocnemius skeletal muscle of the offspring of rats that had been subjected to gestational hypermethioninaemia. The occurrence of muscular injury and inflammation was also measured by creatine kinase activity, levels of creatinine, urea and C‐reactive protein and the presence of cardiac troponin I in serum. Wistar female rats (70–90 days of age) received methionine (2.68 μmol/g body weight) or saline (control) twice a day by subcutaneous injections during the gestational period (21 days). After the rats gave birth, pups were killed at the twenty‐first day of life for removal of muscle and serum. Methionine treatment increased reactive oxygen species production and lipid peroxidation and decreased sulfhydryl content, antioxidant enzymes activities and nitrite levels, as well as total protein content in skeletal muscle of the offspring. Creatine kinase activity was reduced and urea and C‐reactive protein levels were increased in serum of pups. These results were accompanied by reduced muscle mass. Our findings showed that maternal gestational hypermethioninaemia induced changes in oxidative/nitrative status in gastrocnemius skeletal muscle of the offspring. This may represent a mechanism which can contribute to the myopathies and loss of muscular mass that is found in some hypermethioninaemic patients. In addition, we believe that these results may be relevant as gestational hypermethioninaemia could cause damage to the skeletal muscle during intrauterine life.


Pediatric Research | 2017

Pregnancy swimming causes short- and long-term neuroprotection against hypoxia–ischemia in very immature rats

Eduardo Farias Sanches; Luz Elena Durán-Carabali; Andrea Tosta; Fabrício do Couto Nicola; Felipe Schmitz; André Felipe Rodrigues; Cassiana Siebert; Angela Terezinha de Souza Wyse; Carlos Alexandre Netto

BackgroundHypoxia–ischemia (HI) is a major cause of neurological damage in preterm newborn. Swimming during pregnancy alters the offspring’s brain development. We tested the effects of swimming during pregnancy in the very immature rat brain.MethodsFemale Wistar rats (n=12) were assigned to the sedentary (SE, n=6) or the swimming (SW, n=6) group. From gestational day 0 (GD0) to GD21 the rats in the SW group were made to swim for 20 min/day. HI on postnatal day (PND) 3 rats caused sensorimotor and cognitive impairments. Animals were distributed into SE sham (SESH), sedentary HIP3 (SEHI), swimming sham (SWSH), and swimming HIP3 (SWHI) groups. At PND4 and PND5, Na+/K+-ATPase activity and brain-derived neurotrophic factor (BDNF) levels were assessed. During lactation and adulthood, neurological reflexes, sensorimotor, anxiety-related, and cognitive evaluations were made, followed by histological assessment at PND60.ResultsAt early stages, swimming caused an increase in hippocampal BDNF levels and in the maintenance of Na+/K+-ATPase function in the SWHI group. The SWHI group showed smaller lesions and the preservation of white matter tracts. SEHI animals showed a delay in reflex maturation, which was reverted in the SWHI group. HIP3 induced spatial memory deficits and hypomyelination in SEHI rats, which was reverted in the SWHI group.ConclusionSwimming during pregnancy neuroprotected the brains against HI in very immature neonatal rats.


Molecular Neurobiology | 2017

Evaluation of Oxidative Stress Parameters and Energy Metabolism in Cerebral Cortex of Rats Subjected to Sarcosine Administration.

Rodrigo Binkowski de Andrade; Tanise Gemelli; Denise Bertin Rojas; Tomas Duk Hwa Kim; Ângela Zanatta; Felipe Schmitz; André Felipe Rodrigues; Angela Terezinha de Souza Wyse; Moacir Wajner; Carlos Severo Dutra-Filho; Clovis Milton Duval Wannmacher

Sarcosine is an N-methyl derivative of the amino acid glycine, and its elevation in tissues and physiological fluids of patients with sarcosinemia could reflect a deficient pool size of activated 1-carbon units. Sarcosinemia is a rare inherited metabolic condition associated with mental retardation. In the present study, we investigated the acute effect of sarcosine and/or creatine plus pyruvate on some parameters of oxidative stress and energy metabolism in cerebral cortex homogenates of 21-day-old Wistar rats. Acute administration of sarcosine induced oxidative stress and diminished the activities of adenylate kinase, GAPDH, complex IV, and mitochondrial and cytosolic creatine kinase. On the other hand, succinate dehydrogenase activity was enhanced in cerebral cortex of rats. Moreover, total sulfhydryl content was significantly diminished, while DCFH oxidation, TBARS content, and activities of SOD and GPx were significantly enhanced by acute administration of sarcosine. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by sarcosine administration on the oxidative stress and the enzymes of phosphoryltransfer network. These results indicate that acute administration of sarcosine may stimulate oxidative stress and alter the energy metabolism in cerebral cortex of rats. In case these effects also occur in humans, they may contribute, along with other mechanisms, to the neurological dysfunction of sarcosinemia, and creatine and pyruvate supplementation could be beneficial to the patients.


Anais Da Academia Brasileira De Ciencias | 2016

Antioxidant effect of simvastatin throught oxidative imbalance caused by lisdexamfetamine dimesylate.

Guilherme André Eger; Vinícius Vialle Ferreira; Camila Ribeiro Batista; Henrique LuisPetrek Bonde; Daniela Delwing de Lima; Angela Terezinha de Souza Wyse; Júlia Niehues da Cruz; André Felipe Rodrigues; Débora Delwing Dal Magro; José Geraldo Pereira da Cruz

The present study aims to directly investigate the behavioral and antioxidant effects of simvastatin in a model of bipolar mania induced by lisdexamfetamine dimesylate. Wistar rats were treated for 30 days with simvastatin. On the 24th day after the start of treatment, each rat was administered lisdexamfetamine dimesylate for 7 days. The results suggest that simvastatin combined with lisdexamfetamine dimesylate induced a significant increased locomotion and lisdexamfetamine dimesylate administration causes an oxidative imbalance determined by an increment in lipid peroxidation, protein oxidation and alterations in the activities of antioxidant enzymes in brain areas; moreover, in the presence of simvastatin, most of these effects were prevented. These findings contribute to a better understanding of the critical roles of lisdexamfetamine dimesylate in the treatment of neuropsychiatric disorders, associated with increased oxidative stress and changes in antioxidant enzymatic defense. In view of the central role played by lisdexamfetamine dimesylate, the established antioxidant effect of simvastatin therapy is of major interest.

Collaboration


Dive into the André Felipe Rodrigues's collaboration.

Top Co-Authors

Avatar

Angela Terezinha de Souza Wyse

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Felipe Schmitz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Paula Pierozan

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Helena Biasibetti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carlos Alexandre Netto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Eduardo Farias Sanches

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Bruna M. Schweinberger

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Mariana Migliorini Parisi

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Bruna Stela Zanotto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carmen Regla Vargas

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge