Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Farias Sanches is active.

Publication


Featured researches published by Eduardo Farias Sanches.


Neurobiology of Learning and Memory | 2012

Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat

Fernanda Cechetti; Paulo Valdeci Worm; Viviane Rostirolla Elsner; Karine Bertoldi; Eduardo Farias Sanches; Juliana Ben; Ionara Rodrigues Siqueira; Carlos Alexandre Netto

Physical activity impacts functional recovery following stroke in humans, however its effects in experimental animals submitted to chronic cerebral hypoperfusion have not been investigated. The aim of this study was to evaluate the therapeutic potential of exercise, as assessed by cognitive activity in the Morris water maze and the brain oxidative status, through measurement of macromolecules damage, TBARS levels and total cellular thiols, as well as antioxidant enzymes in hippocampus, striatum and cerebral cortex. Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested 3 months after the ischemic event. The effects of three different exercise protocols were examined: pre-ischemia, post-ischemia and pre+post-ischemia. Physical exercise consisted of sessions of 20-min, 3 times per week during 12 weeks (moderate intensity). Rats were submitted to cognitive assessment, in both reference and working spatial memory and after the last testing session were sacrificed to have oxidative stress parameters determined. Hypoperfusion caused a significant cognitive deficit in both spatial water maze tasks and this effect was reversed in rats receiving exercise protocol post and pre+post the ischemic event. Moreover, forced regular treadmill exercise regulated oxidative damage and antioxidant enzyme activity in the hippocampus. These results suggest that physical exercise protects against cognitive and biochemical impairments caused by chronic cerebral hypoperfusion.


Neuroscience | 2013

Early hypoxia–ischemia causes hemisphere and sex-dependent cognitive impairment and histological damage

Eduardo Farias Sanches; N.S. Arteni; F. Nicola; L. Boisserand; S. Willborn; Carlos Alexandre Netto

Neonatal cerebral hypoxia-ischemia (HI) is an important cause of neurological disorders. In the preterm children, HI causes preferentially white matter damage and late cognitive impairments. Rodent HI performed at postnatal day 3 (HIP3) provides valuable information on the brain response to injury in immature animals as related to sensory, motor and cognitive impairments observed in humans born prematurely. The present study aimed to observe the effects of brain lateralization and sexual dimorphism following HIP3 on behavior and histological damage assessed in adulthood. Male and female Wistar rats had their right or left common carotid artery occluded and exposed to 8% oxygen for 1.5h; control rats received sham surgery and exposure to 1.5h of room air in isolation of their dams. Sensory and cognitive parameters were assessed by the use of elevated plus maze, cylinder test and Morris water maze. After behavioral testing, hemisphere and hippocampus volumes were used to define brain damage extension; white matter damage was estimated through corpus callosum area ratio. No motor impairments were shown in HIP3 rats and anxiety-related changes were observed only in right injured animals. Females having left occlusion were more vulnerable to HIP3 injury since they presented spatial memory impairment and greater histological damage. These results show the modulation exerted by sex and brain lateralization following early HI at postnatal day 3.


Brain Research | 2012

Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats.

Eduardo Farias Sanches; Nice Sarmento Arteni; Christiano Spindler; Felipe dos Santos Moysés; Ionara Rodrigues Siqueira; Marcos Luis Perry; Carlos Alexandre Netto

Neonatal hypoxic-ischemic encephalopathy (HI) is a major cause of nervous system damage and neurological morbidity. Perinatal malnutrition affects morphological, biochemical and behavioral aspects of neural development, including pathophysiological cascades of cell death triggered by ischemic events, so modifying resulting brain damage. Female Wistar rats were subjected to protein restriction during pregnancy and lactation (control group: 25% soybean protein; malnourished group: 7%). Seven days after delivery (PND7), their offspring were submitted to unilateral cerebral HI; rats were then tested for sensorimotor (PND7 and PND60) and memory (PND60) functions. Offspring of malnourished mothers showed marked reduction in body weight starting in lactation and persisting during the entire period of observation. There was a greater sensorimotor deficit after HI in malnourished (M) animals, in righting reflex and in home bedding task, indicating an interaction between diet and hypoxia-ischemia. At PND60, HI rats showed impaired performance when compared to controls in training and test sessions of rota-rod task, however there was no effect of malnutrition per se. In the open field, nourished HI (HI-N) presented an increase in crossings number; this effect was not present in HI-M group. Surprisingly, HI-M rats presented a better performance in inhibitory avoidance task and a smaller hemispheric brain damage as compared to HI-N animals. Our data points to a possible metabolic adaptation in hypoxic-ischemic animals receiving protein malnutrition during pregnancy and lactation; apparently we observed a neuroprotective effect of diet, possibly decreasing the brain energy demand, under a hypoxic-ischemic situation.


Neuroscience | 2015

Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia-ischemia in P3 and P7 rats.

Eduardo Farias Sanches; Nice Sarmento Arteni; Fabrício do Couto Nicola; Dirceu Aristimunha; Carlos Alexandre Netto

Neonatal cerebral hypoxia-ischemia (HI) is a major cause of neurological disorders and the most common cause of death and permanent disability worldwide, affecting 1-2/1000 live term births and up to 60% of preterm births. The Levine-Rice is the main experimental HI model; however, critical variables such as the age of animals, sex and hemisphere damaged still receive little attention in experimental design. We here investigated the influence of sex and hemisphere injured on the functional outcomes and tissue damage following early (hypoxia-ischemia performed at postnatal day 3 (HIP3)) and late (hypoxia-ischemia performed at postnatalday 7 (HIP7)) HI injury in rats. Male and female 3- (P3) or 7-day-old (P7) Wistar rats had their right or left common carotid artery occluded and exposed to 8% O2 for 1.5h. Sham animals had their carotids exposed but not occluded nor submitted to the hypoxic atmosphere. Behavioral impairments were assessed in the open field arena, in the Morris water maze and in the inhibitory avoidance task; volumetric extent of tissue damage was assessed using cresyl violet staining at adult age, after completing behavioral assessment. The overall results demonstrate that: (1) HI performed at the two distinct ages cause different behavioral impairments and histological damage in adult rats (2) behavioral deficits following neonatal HIP3 and HIP7 are task-specific and dependent on sex and hemisphere injured (3) HIP7 animals presented the expected motor and cognitive deficits (4) HIP3 animals displayed discrete but significant cognitive impairments in the left hemisphere-injured females (5) HI brain injury and its consequences are determined by animals sex and the damaged hemisphere, markedly in HIP3-injured animals.


Physiology & Behavior | 2014

Exposition to tannery wastewater did not alter behavioral and biochemical parameters in Wistar rats.

Felipe dos Santos Moysés; Karine Bertoldi; Christiano Spindler; Eduardo Farias Sanches; Viviane Rostirola Elsner; Marco Antônio Siqueira Rodrigues; Ionara Rodrigues Siqueira

There are scarce data on the neurotoxicity in mammalian induced by tannery wastewaters. Previously, the anxiogenic effect of tannery wastewater was demonstrated in mice, while wastewater submitted to photoelectrooxidation (PEO) process treatment did not affect the anxiety state. Considering that species may response differently to xenobiotics, the aim of the present work was to study the effects of exposure to tannery wastewaters (non-PEO or PEO-treated) on behavioral and neurochemical markers in another species of laboratory animals, specifically Wistar rats. Male Wistar rats were given free access to water bottles containing non-PEO or PEO-treated tannery wastewaters (0.1, 1 and 5% in drinking water). During the exposure, behavioral tests of anxiety (elevated plus-maze, neophobia, open field and light-dark box), depression (forced swimming) and memory (inhibitory avoidance, novel object and discriminative avoidance) were performed. On the 30th day, brain structures were dissected out to evaluate cellular oxidative state (hippocampus, cerebellum and striatum) and acetylcholinesterase activity (hippocampus and striatum). Exposure to tannery effluent with or without photoelectrochemical treatment did not alter any behavioral and neurochemical parameters evaluated. Our data indicate that Wistar rats may not be an adequate species for ecotoxicological studies involving tannery effluents and that POE treatment did not generate other toxic compounds.


Neurological Research | 2014

Resveratrol treatment has neuroprotective effects and prevents cognitive impairment after chronic cerebral hypoperfusion

Janine Beatriz Ramos Anastácio; Carlos Alexandre Netto; Cibele Canal Castro; Eduardo Farias Sanches; Daniele C. Ferreira; Cristie Noschang; Rachel Krolow; Carla Dalmaz; Aline de Souza Pagnussat

Abstract Objective: The present study investigated the neuroprotective effects of Resveratrol (RSV) in rats submitted to chronic cerebral hypoperfusion (CCH) in a model of permanent two-vessel occlusion (2VO). Methods: For this purpose, adult Wistar rats received daily i.p. injections of RSV (20 mg/kg) for 7 days, starting 1 hour after the 2VO procedure. Behavioral testing was run between the 30th and 45th days after the 2VO surgery. Accordingly, spatial working memory function in the Morris water maze was evaluated. At the end of the behavioral assessment (45th day post-surgery) part of experimental animals underwent transcardiac perfusion for histological analysis. Another group was euthanized on the 3rd, 14th, and 45th days post-surgery for nerve growth factor (NGF) evaluation. Results: Resveratrol treatment along 7 days after CCH significantly attenuated pyramidal cell death in the CA1 hippocampal subfield and prevented both spatial working and reference memory impairments. Our results revealed an enhancement of NGF expression 3 days after CCH in all ischemic animals. A late increase in hippocampal NGF levels was detected after 45 days only in CCH-RSV treated animals. Conclusions: Results presented here show morphological and functional neuroprotective actions of RSV treatment for CCH, as well as support the inducing effects of RSV on the expression of NGF and its possible association to the neuroprotective action in this rodent model of vascular dementia.


Brazilian Journal of Medical and Biological Research | 2016

Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.

Fabrício do Couto Nicola; L.P. Rodrigues; T. Crestani; Kerlin Quintiliano; Eduardo Farias Sanches; S. Willborn; D. Aristimunha; L. Boisserand; Patricia Pranke; Carlos Alexandre Netto

Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.


Brain Research | 2017

Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis

Fabrício do Couto Nicola; Marília Rossato Marques; Felipe Kawa Odorcyk; Danusa Mar Arcego; Letícia Petenuzzo; Dirceu Aristimunha; Adriana Vizuete; Eduardo Farias Sanches; Daniela Pavulack Pereira; Natasha Maurmann; Carla Dalmaz; Patricia Pranke; Carlos Alexandre Netto

Stem cells from human exfoliated deciduous teeth (SHED) transplants have been investigated as a possible treatment strategy for spinal cord injuries (SCI) due to their potential for promoting functional recovery. The aim of present study was to investigate the effects of SHED on neuronal death after an experimental model of SCI. METHODS Wistar rats were spinalized using NYU impactor®. Animals were randomly distributed into 4 groups: Control (Naive) or Surgical control, Sham (laminectomy with no SCI); SCI (laminectomy followed by SCI, treated with vehicle); SHED (SCI treated with intraspinal transplantation of 3×105 SHED, 1h after SCI). Functional evaluations and morphological analysis were performed to confirm the spinal injury and the benefit of SHED transplantation on behavior, tissue protection and motor neuron survival. Flow cytometry of neurons, astrocytes, macrophages/microglia and T cells of spinal cord tissue were run at six, twenty-four, forty-eight and seventy-two hours after lesion. Six hours after SCI, ELISA and Western Blot were run to assess pro- and anti-apoptotic factors. The SHED group showed a significant functional improvement in comparison to the SCI animals, as from the first week until the end of the experiment. This behavioral protection was associated with less tissue impairment and greater motor neuron preservation. SHED reduced neuronal loss over time, as well as the overexpression of pro-apoptotic factor TNF-α, while maintained basal levels of the anti-apoptotic BCL-XL six hours after lesion. Data here presented show that SHED transplantation one hour after SCI interferes with the balance between pro- and anti-apoptotic factors and reduces early neuronal apoptosis, what contributes to tissue and motor neuron preservation and hind limbs functional recovery.


Surgical Neurology International | 2016

Polymethylmethacrylate imbedded with antibiotics cranioplasty: An infection solution for moderate and large defects reconstruction

Paulo Valdeci Worm; Tobias Ludwig do Nascimento; Fabrício do Couto Nicola; Eduardo Farias Sanches; Carlos Fernando dos Santos Moreira; Luiz Pedro Willimann Rogério; Marcelo Martins dos Reis; Guilherme Finger; Marcus Vinicius Martins Collares

Background: In cases where autologous bone graft reconstruction is not possible (such as comminuted fractures, bone graft reabsorption, or infection) and the use of synthetic material is required, polymethylmethacrylate (PMMA) use is a safe and efficient solution. Studies comparing the incidence of postoperative complications between autologous and synthetic cranioplasty are heterogeneous, not allowing a conclusion of which is the best material for skull defects reconstruction. Current medical literature lacks prospective well-delineated studies with long-term follow-up that analyze the impact of antibiotic use in PMMA cranial reconstruction of moderate and large defects. Methods: A prospective series of patients, who underwent cranioplasty reconstruction with PMMA impregnated with antibiotic, were followed for 2 years. Authors collected data regarding demographic status, clinical conditions, surgical information, and its complications. Results: A total of 58 patients completed full follow-up with a mean group age of 40 years and a male predominance (77%). Major complications that required surgical management were identified in 5 patients, and 10 patients evolved with minor complications. Postoperative surgical site infection incidence was 3.2%. Conclusion: The infection rate in patients submitted to PMMA flap cranioplasty impregnated with antibiotic is significantly inferior comparing to the data described in medical literature. A lower infection incidence impacts secondary endpoints such as minimizing surgical morbidity, mortality, hospitalization period, and, consequently, costs.


International Journal of Developmental Neuroscience | 2016

Intracerebroventricular D-galactose administration impairs memory and alters activity and expression of acetylcholinesterase in the rat.

André Felipe Rodrigues; Helena Biasibetti; Bruna Stela Zanotto; Eduardo Farias Sanches; Paula Pierozan; Felipe Schmitz; Mariana Migliorini Parisi; Florencia M. Barbé-Tuana; Carlos Alexandre Netto; Angela Terezinha de Souza Wyse

Tissue accumulation of galactose is a hallmark in classical galactosemia. Cognitive deficit is a symptom of this disease which is poorly understood. The aim of this study was to investigate the effects of intracerebroventricular administration of galactose on memory (inhibitory avoidance and novel object recognition tasks) of adult rats. We also investigated the effects of galactose on acetylcholinesterase (AChE) activity, immunocontent and gene expression in hippocampus and cerebral cortex. Wistar rats received a single injection of galactose (4 mM) or saline (control). For behavioral parameters, galactose was injected 1 h or 24 h previously to the testing. For biochemical assessment, animals were decapitated 1 h, 3 h or 24 h after galactose or saline injection; hippocampus and cerebral cortex were dissected. Results showed that galactose impairs the memory formation process in aversive memory (inhibitory avoidance task) and recognition memory (novel object recognition task) in rats. The activity of AChE was increased, whereas the gene expression of this enzyme was decreased in hippocampus, but not in cerebral cortex. These findings suggest that these changes in AChE may, at least in part, to lead to memory impairment caused by galactose. Taken together, our results can help understand the etiopathology of classical galactosemia.

Collaboration


Dive into the Eduardo Farias Sanches's collaboration.

Top Co-Authors

Avatar

Carlos Alexandre Netto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Fabrício do Couto Nicola

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Felipe Kawa Odorcyk

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Dirceu Aristimunha

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Patricia Pranke

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Adriana Vizuete

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Angela Terezinha de Souza Wyse

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Marília Rossato Marques

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

André Felipe Rodrigues

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Janaína Kolling

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge