André Quincozes-Santos
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by André Quincozes-Santos.
PLOS ONE | 2013
André Quincozes-Santos; Larissa Daniele Bobermin; Alexandra Latini; Moacir Wajner; Diogo O. Souza; Carlos-Alberto Gonçalves; Carmem Gottfried
Resveratrol, a polyphenol presents in grapes and wine, displays antioxidant and anti-inflammatory properties and cytoprotective effect in brain pathologies associated to oxidative stress and neurodegeneration. In previous work, we demonstrated that resveratrol exerts neuroglial modulation, improving glial functions, mainly related to glutamate metabolism. Astrocytes are a major class of glial cells and regulate neurotransmitter systems, synaptic processing, energy metabolism and defense against oxidative stress. This study sought to determine the protective effect of resveratrol against hydrogen peroxide (H2O2)-induced cytotoxicity in C6 astrocyte cell line, an astrocytic lineage, on neurochemical parameters and their cellular and biochemical mechanisms. H2O2 exposure increased oxidative-nitrosative stress, iNOS expression, cytokine proinflammatory release (TNFα levels) and mitochondrial membrane potential dysfunction and decreased antioxidant defenses, such as SOD, CAT and creatine kinase activity. Resveratrol strongly prevented C6 cells from H2O2-induced toxicity by modulating glial, oxidative and inflammatory responses. Resveratrol per se increased heme oxygenase 1 (HO1) expression and extracellular GSH content. In addition, HO1 signaling pathway is involved in the protective effect of resveratrol against H2O2-induced oxidative damage in astroglial cells. Taken together, these results show that resveratrol represents an important mechanism for protection of glial cells against oxidative stress.
Annals of the New York Academy of Sciences | 2011
André Quincozes-Santos; Carmem Gottfried
Resveratrol, a redox active compound present in grapes and wine, has a wide range of biological effects, including cardioprotective, chemopreventive, and anti‐inflammatory activities. The central nervous system is a target of resveratrol, which can pass the blood–brain barrier and induce neuroprotective effects. Astrocytes are one of the most functionally diverse groups of cells in the nervous system, intimately associated with glutamatergic metabolism, transmission, synaptic plasticity, and neuroprotection. In this review, we focus on the resveratrol properties and response to oxidative insult on important astroglial parameters involved in brain plasticity, such as glutamate uptake, glutamine synthetase activity, glutathione content, and secretion of the trophic factor S100B.
Toxicology in Vitro | 2014
Bruna Bellaver; Débora Guerini Souza; Diogo O. Souza; André Quincozes-Santos
Astrocytes are responsible for modulating neurotransmitter systems and synaptic information processing, ionic homeostasis, energy metabolism, maintenance of the blood-brain barrier, and antioxidant and inflammatory responses. Our group recently published a culture model of cortical astrocytes obtained from adult Wistar rats. In this study, we established an in vitro model for hippocampal astrocyte cultures from adult (90 days old) and aged (180 days old) Wistar rats. Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and neuroprotective effects that modulate glial functions. Here, we evaluated the effects of resveratrol on GSH content, GS activity, TNF-α and IL-1β levels in hippocampal astrocytes from newborn, adult and aged Wistar rats. We observed a decrease in antioxidant defenses and an increase in the inflammatory response in hippocampal astrocytes from adult and aged rats compared to classical astrocyte cultures from newborn rats. Resveratrol prevented these effects. These findings reinforce the neuroprotective effects of resveratrol, which are mainly associated with antioxidant and anti-inflammatory activities.
Neurochemistry International | 2007
Patrícia Nardin; Francine Tramontina; Marina Concli Leite; Ana Carolina Tramontina; André Quincozes-Santos; Lúcia Maria Vieira de Almeida; Ana Maria Oliveira Battastini; Carmem Gottfried; Carlos Alberto Saraiva Goncalves
S100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression. Here, we investigated cell density, morphological and biochemical alterations in primary cortical astrocytes from rats and C6 glioma cells cultured in high-glucose medium. Astrocytes and C6 glioma cells have a reduced content of S100B and glial fibrillary acidic protein when cultured in a high-glucose environment, as well as a reduced content of glutathione and cell proliferation rate. Although these cells have been used indistinctly to study S100B secretion, we observed a contrasting profile of S100B secretion in a high-glucose medium: a decrease in primary astrocytes and an increase in C6 glioma cells. Based on the in vitro neurotrophic effects of the S100B protein, our data suggest that chronic elevated glucose levels affect astrocyte activity, reducing extracellular secretion of S100B and that this, in turn, could affect neuronal activity and survival. Such astrocyte alterations could contribute to cognitive deficit and other impairments observed in diabetic patients.
Journal of Neuroimmunology | 2009
Daniela Fraga de Souza; Marina Concli Leite; André Quincozes-Santos; Patrícia Nardin; Lucas Silva Tortorelli; Maurício Menegatti Rigo; Carmem Gottfried; Rodrigo Bainy Leal; Carlos-Alberto Gonçalves
S100B is an astrocyte-derived cytokine implicated in the IL-1beta-triggered cytokine cycle in Alzheimers disease. However, the secretion of S100B following stimulation by IL-1beta has not been directly demonstrated. We investigated S100B secretion in cortical primary astrocyte cultures, C6 glioma cells and acute hippocampal slices exposed to IL-1beta. S100B secretion was induced by IL-1beta in all preparations, involving MAPK pathway and, apparently, NF-small ka, CyrillicB signaling. Astrocytes and C6 cells exhibited different sensitivities to IL-1beta. These results suggest that IL-1beta-induced S100B secretion is a component of the neuroinflammatory response, which would support the involvement of S100B in the genesis of neurodegenerative diseases.
PLOS ONE | 2012
Larissa Daniele Bobermin; André Quincozes-Santos; Maria Cristina Guerra; Marina Concli Leite; Diogo O. Souza; Carlos-Alberto Gonçalves; Carmem Gottfried
Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.
Toxicology in Vitro | 2014
André Quincozes-Santos; Larissa Daniele Bobermin; Ana Carolina Tramontina; Krista Minéia Wartchow; Bárbara Tagliari; Diogo O. Souza; Angela Terezinha de Souza Wyse; Carlos-Alberto Gonçalves
Glutamate is the major excitatory neurotransmitter in the brain and over-stimulation of the glutamate receptors, NMDA, AMPA and kainate (KA), may cause neuronal death in epilepsy, seizures and neurodegenerative diseases. Mitochondria have critical cellular functions that influence neuronal excitability, such as regulation of Ca(2+) homeostasis and ATP production to maintain Na(+)K(+)-ATPase in the central nervous system (CNS). However, mitochondria are also the primary site of reactive oxygen species (ROS) production, and oxidative stress can induce cellular damage. Resveratrol, a polyphenol found in grapes and wines, presents antioxidant and neuroprotective effects on brain pathologies. This study sought to determine the neuroprotective effect of resveratrol against glutamate toxicity in acute hippocampal slices, using specific inhibitors of glutamate channels, and to investigate the targets of glutamate excitotoxicity, such as mitochondrial membrane potential (ΔΨ(m)), Na(+)K(+)-ATPase and glutamine synthetase (GS) activity. Resveratrol decreases intracellular ROS production, most likely by mechanisms involving NMDA, AMPA/KA, intracellular Ca(2+) and the heme oxygenase 1 (HO1) pathway, and prevents mitochondrial dysfunction and impairments in Na(+)K(+)-ATPase and GS activity after glutamate activation. Taken together, these results show that resveratrol may exhibit an important neuroprotective mechanism against neuropsychiatric disorders, focusing on mitochondrial bioenergetics and oxidative stress, as well as inhibitory effects on ionic channels.
Journal of Alzheimer's Disease | 2009
Letícia de Oliveira Rodrigues; Regina Biasibetti; Alessandra Swarowsky; Marina Concli Leite; André Quincozes-Santos; Jorge A Quilfeldt; Matilde Achaval; Carlos-Alberto Gonçalves
Although the exact cause of Alzheimers disease remains elusive, many possible risk factors and pathological alterations have been used in the elaboration of in vitro and in vivo models of this disease in rodents, including intracerebral infusion of streptozotocin (STZ). Using this model, we evaluated spatial cognitive deficit and neurochemical hippocampal alterations, particularly astroglial protein markers such as glial fibrillary acidic protein (GFAP) and S100B, glutathione content, nitric oxide production, and cerebrospinal fluid (CSF) S100B. In addition, prevention of these alterations by aminoguanidine administration was evaluated. Results confirm a spatial cognitive deficit and nitrative stress in this dementia model as well as specific astroglial alterations, particularly S100B accumulation in the hippocampus and decreased CSF S100B. The hippocampal astroglial activation occurred independently of the significant alteration in GFAP content. Moreover, all these alterations were completely prevented by aminoguanidine administration, confirming the neuroprotective potential of this compound, but suggesting that nitrative stress and/or glycation may be underlying these alterations. These findings contribute to the understanding of diseases accompanied by cognitive deficits and the STZ-model of dementia.
Food and Chemical Toxicology | 2011
Renata Torres Abib; Kaite Cristiane Peres; Anderson Machado Barbosa; Tanara Vieira Peres; Angela Bernardes; Lizandra M. Zimmermann; André Quincozes-Santos; Haidi D. Fiedler; Rodrigo Bainy Leal; Marcelo Farina; Carmem Gottfried
Many health claims have been made about the medicinal benefits of drinking green tea, including neuroprotection. This study mainly focuses on Epigallocatechin 3-gallate (EGCG), a potent antioxidant, which is abundantly found in green tea. Cadmium [Cd(2+)] is a toxic pollutant that leads to neurotoxicity in both animals and humans. Although the entrance of Cd(2+) in the adult central nervous system is limited, developmental neurotoxicity has been evidenced as result of the blood-brain barrier (BBB) immaturity. Moreover, high Cd(2+) levels are known to impair BBB function. Furthermore, the molecular mechanisms related to its neurotoxic properties remain unknown. This study evaluates the potential protective effect of the major green tea polyphenol, EGCG, against Cd(2+)-induced mitotoxicity under in vitro conditions, using mitochondrial-enriched fractions from rat brain. Co-incubation of EGCG with Cd(2+) prevented the Cd(2+)-induced mitochondrial dysfunction (capacity to reduce MTT to formazan). In addition, EGCG completely prevented mitochondrial lipid peroxidation induced by Cd(2+) but did not affect non protein thiols levels. Spectroscopic studies have shown EGCG able to form a chemical complex with Cd(2+), in an equimolar ratio. In this study we demonstrate EGCG effectiveness in protecting against Cd(2+)-induced mitochondrial dysfunction and lipid peroxidation probably due to its antioxidant and chelating effects.
Journal of Neural Transmission | 2010
Letícia Rodrigues; Márcio Ferreira Dutra; Jocemar Ilha; Regina Biasibetti; André Quincozes-Santos; Marina Concli Leite; Simone Marcuzzo; Matilde Achaval; Carlos-Alberto Gonçalves
The intracerebroventricular infusion of streptozotocin (icv-STZ) has been largely used in research to mimic the main characteristics of Alzheimer’s disease (AD), including cognitive decline, impairment of cholinergic transmission, oxidative stress and astrogliosis. Moderate physical exercise has a number of beneficial effects on the central nervous system, as demonstrated both in animals and in human studies. This study aimed to evaluate the effect of 5-week treadmill training, in the icv-SZT model of sporadic AD, on cognitive function, oxidative stress (particularly mediated by NO) and on the astrocyte marker proteins, glial fibrillary acidic protein (GFAP) and S100B. Results confirm the spatial cognitive deficit and oxidative stress in this model, as well as astroglial alterations, particularly a decrease in CSF S100B. Physical exercise prevented these alterations, as well as increasing the hippocampal content of glutathione and GFAP per se in the CA1 region. These findings reinforce the potential neuroprotective role of moderate physical exercise. Astroglial changes observed in this dementia model contribute to understanding AD and other diseases that are accompanied by cognitive deficit.