Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrícia Nardin is active.

Publication


Featured researches published by Patrícia Nardin.


Molecular Psychiatry | 2016

C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications.

Brisa Simoes Fernandes; Johann Steiner; Hans-Gert Bernstein; Seetal Dodd; Julie A. Pasco; Olivia M. Dean; Patrícia Nardin; Carlos Alberto Saraiva Goncalves; Michael Berk

The inflammatory hypothesis of schizophrenia (SZ) posits that inflammatory processes and neural–immune interactions are involved in its pathogenesis, and may underpin some of its neurobiological correlates. SZ is the psychiatric disorder causing the most severe burden of illness, not just owing to its psychiatric impairment, but also owing to its significant medical comorbidity. C-reactive protein (CRP) is a commonly used biomarker of systemic inflammation worldwide. There are some conflicting results regarding the behaviour of CRP in SZ. The aims of this study were to verify whether peripheral CRP levels are indeed increased in SZ, whether different classes of antipsychotics divergently modulate CRP levels and whether its levels are correlated with positive and negative symptomatology. With that in mind, we performed a meta-analysis of all cross-sectional studies of serum and plasma CRP levels in SZ compared to healthy subjects. In addition, we evaluated longitudinal studies on CRP levels before and after antipsychotic use. Our meta-analyses of CRP in SZ included a total of 26 cross-sectional or longitudinal studies comprising 85 000 participants. CRP levels were moderately increased in persons with SZ regardless of the use of antipsychotics and did not change between the first episode of psychosis and with progression of SZ (g=0.66, 95% confidence interval (95% CI) 0.43 to 0.88, P<0.001, 24 between-group comparisons, n=82 962). The extent of the increase in peripheral CRP levels paralleled the increase in severity of positive symptoms, but was unrelated to the severity of negative symptoms. CRP levels were also aligned with an increased body mass index. Conversely, higher age correlated with a smaller difference in CRP levels between persons with SZ and controls. Furthermore, CRP levels did not increase after initiation of antipsychotic medication notwithstanding whether these were typical or atypical antipsychotics (g=0.01, 95% CI −0.20 to 0.22, P=0.803, 8 within-group comparisons, n=713). In summary, our study provides further evidence of the inflammatory hypothesis of SZ. Whether there is a causal relationship between higher CRP levels and the development of SZ and aggravation of psychotic symptoms, or whether they are solely a marker of systemic low-grade inflammation in SZ, remains to be clarified.


Molecular Psychiatry | 2015

Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications

Brisa Simoes Fernandes; Johann Steiner; Michael Berk; Marc L. Molendijk; A. González-Pinto; Christoph W. Turck; Patrícia Nardin; Carlos Alberto Saraiva Goncalves

It has been postulated that schizophrenia (SZ) is related to a lower expression of brain-derived neurotrophic factor (BDNF). In the past few years, an increasing number of divergent clinical studies assessing BDNF in serum and plasma have been published. It is now possible to verify the relationship between BDNF levels and severity of symptoms in SZ as well as the effects of antipsychotic drugs on BDNF using meta-analysis. The aims of this study were to verify if peripheral BDNF is decreased in SZ, whether its levels are correlated with positive and negative symptomatology and if BDNF levels change after antipsychotic treatment. This report consists of two distinct meta-analyses of peripheral BDNF in SZ including a total of 41 studies and more than 7000 participants: (1) peripheral BDNF levels in serum and plasma were moderately reduced in SZ compared with controls. Notably, this decrease was accentuated with the disease duration. However, the extent of peripheral BDNF level decrease did not correlate with the severity of positive and negative symptoms. (2) In plasma, but not serum, peripheral BDNF levels are consistently increased after antipsychotic treatment irrespective of the patient’s response to medication. In conclusion, there is compelling evidence that there are decreased levels of peripheral BDNF in SZ, in parallel to previously described reduced cerebral BDNF expression. It remains unclear whether these systemic changes are causally related to the development of SZ or if they are merely a pathologic epiphenomenon.


Brain Research | 2009

Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat.

Évelin Vicente; Daniel Degerone; Liana Roman Bohn; Francisco Scornavaca; Alexandre de Brito Borges Pimentel; Marina Concli Leite; Alessandra Swarowsky; Letícia Rodrigues; Patrícia Nardin; Lúcia Maria Vieira de Almeida; Carmem Gottfried; Diogo O. Souza; Carlos Alexandre Netto; Carlos Alberto Saraiva Goncalves

The permanent occlusion of common carotid arteries (2VO) causes a significant reduction of cerebral blood flow (hypoperfusion) in rats and constitutes a well established experimental model to investigate neuronal damage and cognitive impairment that occurs in human ageing and Alzheimers disease. In the present study, we evaluated two astroglial proteins--S100B and glial fibrillary acidic protein (GFAP)--in cerebral cortex and hippocampus tissue, glutamate uptake and glutamine synthetase activity in hippocampus tissue, as well as S100B in cerebrospinal fluid. Cognition, as assessed by reference and working spatial memory protocols, was also investigated. Adult male Wistar rats were submitted to 10 weeks of chronic cerebral hypoperfusion by the 2VO method. A significant increase of S100B and GFAP in hippocampus tissue was observed, as well a significant decrease in glutamate uptake. Interestingly, we observed a decrease in S100B in cerebrospinal fluid. As for the cognitive outcome, there was an impairment of both reference and working spatial memory in the water maze; positive correlation between cognitive impairment and glutamate uptake decrease was evidenced in hypoperfused rats. These data support the hypothesis that astrocytes play a crucial role in the mechanisms of experimental neurodegeneration and that hippocampal pathology arising after chronic hypoperfusion gives rise to memory deficits.


Brain Research | 2008

Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus.

Fernanda Cechetti; Cíntia Fochesatto; Denise Scopel; Patrícia Nardin; Carlos Alberto Saraiva Goncalves; Carlos Alexandre Netto; Ionara Rodrigues Siqueira

Daily moderate intensity exercise (2 weeks of 20 min/day of treadmill training), which reduces damage to hippocampal slices from rats submitted to in vitro ischemia, did not modify oxidative stress parameters in the hippocampus nor the brain-derived neurotrophic factor (BDNF) levels in different brain regions. The aim was to investigate whether the modulation of hippocampal oxidative status and/or brain BDNF content is involved in exercise-induced neuroprotection. Wistar rats were submitted to daily exercise in the treadmill and were sacrificed approximately 16 h after the last treadmill running. Some several oxidative stress parameters were determined, specifically the free radical levels, the macromolecule damage, the total reactive antioxidant potential and reactivity levels, which represent the total antioxidant capacity, in the hippocampus. In addition, BDNF levels in different rat cerebral regions (hippocampus, cortex, striatum, and the cerebellum) were measured by ELISA. The used exercise protocol did not affect any oxidative stress parameters studied in the hippocampus, suggesting that it does not cause a significant oxidative stress nor induce adaptations of the cellular antioxidant system. Treadmill training also did not change the BDNF content in brain areas studied. Considering the fact that this exercise protocol have been shown to be neuroprotective, we might speculate that BDNF levels and oxidative status may not be directly involved with the mechanisms of exercise-induced neuroprotection after ischemia.


Archives of Biochemistry and Biophysics | 2008

Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats

Lúcia Maria Vieira de Almeida; Marina Concli Leite; Ana Paula Thomazi; Cíntia Battú; Patrícia Nardin; Lucas Silva Tortorelli; Caroline Zanotto; Thaís Posser; Susana Tchernin Wofchuk; Rodrigo Bainy Leal; Carlos Alberto Saraiva Goncalves; Carmem Gottfried

There is a current interest in dietary compounds (such as trans-resveratrol) that can inhibit or reverse oxidative stress, the common pathway for a variety of brain disorders, including Alzheimers disease and stroke. The objective of the present study was to investigate the effects of resveratrol, under conditions of oxidative stress induced by H(2)O(2), on acute hippocampal slices from Wistar rats. Here, we evaluated cell viability, extracellular lactate, glutathione content, ERK(MAPK) activity, glutamate uptake and S100B secretion. Resveratrol did not change the decrease in lactate levels and in cell viability (by MTT assay) induced by 1mM H(2)O(2), but prevented the increase in cell permeability to Trypan blue induced by H(2)O(2). Moreover, resveratrol per se increased total glutathione levels and prevented the decrease in glutathione induced by 1mM H(2)O(2). The reduction of S100B secretion induced by H(2)O(2) was not changed by resveratrol. Glutamate uptake was decreased in the presence of 1mM H(2)O(2) and this effect was not prevented by resveratrol. There was also a significant activation of ERK1/2 by 1mM H(2)O(2) and resveratrol was able to completely prevent this activation, leading to activity values lower than control levels. The impairments in astrocyte activities, induced by H(2)O(2), confirmed the importance of these cells as targets for therapeutic strategy in brain disorders involving oxidative stress. This study reinforces the protective role of resveratrol and indicates some possible molecular sites of activity of this compound on glial cells, in the acute damage of brain tissue during oxidative stress.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2008

Secretion of S100B, an astrocyte-derived neurotrophic protein, is stimulated by fluoxetine via a mechanism independent of serotonin

Ana Carolina Tramontina; Francine Tramontina; Larissa Daniele Bobermin; Caroline Zanotto; Daniela Fraga de Souza; Marina Concli Leite; Patrícia Nardin; Carmem Gottfried; Carlos-Alberto Gonçalves

S100B is a calcium-binding protein, produced and secreted by astrocytes, which has a putative paracrine neurotrophic activity. Clinical studies have suggested that peripheral elevation of this protein is positively correlated with a therapeutic antidepressant response, particularly to selective serotonin reuptake inhibitors (SSRIs); however, the mechanism underlying this response remains unclear. Here, we measured S100B secretion directly in hippocampal astrocyte cultures and hippocampal slices exposed to fluoxetine and observed a significant increment of S100B release in the presence of this SSRI, apparently dependent on protein kinase A (PKA). Moreover, we found that serotonin (possibly via the 5HT1A receptor) reduces S100B secretion and antagonizes the effect of fluoxetine on S100B secretion. These data reinforce the effect of fluoxetine, independently of serotonin and serotonin receptors, suggesting a putative role for S100B in depressive disorders and suggesting that other molecular targets may be relevant for antidepressant activity.


Neurochemistry International | 2007

S100B content and secretion decrease in astrocytes cultured in high-glucose medium

Patrícia Nardin; Francine Tramontina; Marina Concli Leite; Ana Carolina Tramontina; André Quincozes-Santos; Lúcia Maria Vieira de Almeida; Ana Maria Oliveira Battastini; Carmem Gottfried; Carlos Alberto Saraiva Goncalves

S100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression. Here, we investigated cell density, morphological and biochemical alterations in primary cortical astrocytes from rats and C6 glioma cells cultured in high-glucose medium. Astrocytes and C6 glioma cells have a reduced content of S100B and glial fibrillary acidic protein when cultured in a high-glucose environment, as well as a reduced content of glutathione and cell proliferation rate. Although these cells have been used indistinctly to study S100B secretion, we observed a contrasting profile of S100B secretion in a high-glucose medium: a decrease in primary astrocytes and an increase in C6 glioma cells. Based on the in vitro neurotrophic effects of the S100B protein, our data suggest that chronic elevated glucose levels affect astrocyte activity, reducing extracellular secretion of S100B and that this, in turn, could affect neuronal activity and survival. Such astrocyte alterations could contribute to cognitive deficit and other impairments observed in diabetic patients.


Journal of Neuroimmunology | 2009

S100B secretion is stimulated by IL-1β in glial cultures and hippocampal slices of rats: Likely involvement of MAPK pathway

Daniela Fraga de Souza; Marina Concli Leite; André Quincozes-Santos; Patrícia Nardin; Lucas Silva Tortorelli; Maurício Menegatti Rigo; Carmem Gottfried; Rodrigo Bainy Leal; Carlos-Alberto Gonçalves

S100B is an astrocyte-derived cytokine implicated in the IL-1beta-triggered cytokine cycle in Alzheimers disease. However, the secretion of S100B following stimulation by IL-1beta has not been directly demonstrated. We investigated S100B secretion in cortical primary astrocyte cultures, C6 glioma cells and acute hippocampal slices exposed to IL-1beta. S100B secretion was induced by IL-1beta in all preparations, involving MAPK pathway and, apparently, NF-small ka, CyrillicB signaling. Astrocytes and C6 cells exhibited different sensitivities to IL-1beta. These results suggest that IL-1beta-induced S100B secretion is a component of the neuroinflammatory response, which would support the involvement of S100B in the genesis of neurodegenerative diseases.


Journal of Neuroscience Methods | 2007

Immunoassay for glial fibrillary acidic protein: Antigen recognition is affected by its phosphorylation state

Francine Tramontina; Marina Concli Leite; Keila Maria Mendes Ceresér; Daniela Fraga de Souza; Ana Carolina Tramontina; Patrícia Nardin; Ana Cristina Andreazza; Carmem Gottfried; Flávio Kapczinski; Carlos-Alberto Gonçalves

Glial fibrillary acid protein (GFAP) is used commonly as a marker of astrogliosis and astrocyte activation in several situations involving brain injury. Its content may be measured by immunocytochemistry, immunoblotting or enzyme-linked immunosorbent assay (ELISA), usually employing commercial antibodies. Two major post-translational modifications in GFAP (phosphorylation and proteolysis) may alter the interpretation of results or for immunoassay standardization. This study using a non-sandwich ELISA aimed to investigate the putative changes in the immunorecognition due to the phosphorylated state of the antigen by a routinely used polyclonal anti-GFAP antibody from DAKO. Results involving in vitro phosphorylation of purified GFAP or biological samples (brain tissue, cell culture and cerebrospinal fluid) mediated by protein kinase dependent on cAMP indicate that GFAP phosphorylation improves the recognition by the used antibody. These results provide support to the understanding of fast changes in the GFAP-immunoreactivity and suggest that caution is necessary in the interpretation of results using this antibody, as well as indicate that the effect of post-translational modifications must be considered during the standardization of immunoassays with other antibodies.


Brain Research | 2009

Long-term effects of environmental stimulation following hypoxia–ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex

Lenir Orlandi Pereira; Atahualpa Cauê Paim Strapasson; Patrícia Nardin; Carlos Alberto Saraiva Goncalves; Ionara Rodrigues Siqueira; Carlos Alexandre Netto

Environmental enrichment recovers memory deficits without affecting atrophy of the hippocampus adult rats submitted to neonatal hypoxia-ischemia (HI). The present study was designed to investigate whether the modulation of brain oxidative status and/or BDNF content, as assessed in adulthood, are involved with the functional neuroprotection caused by environmental enrichment in animals receiving neonatal HI. Male Wistar rats, in the 7th postnatal day, were submitted to the Levine-Rice model of neonatal hypoxia-ischemia, comprising permanent occlusion of the right common carotid artery and a 90 min period of hypoxia (8% O(2)-92% N(2)). Starting 2 weeks after the HI event, animals were stimulated by the enriched environment (1 h/day for 9 weeks). Rats were sacrificed approximately 24 h after the end of enrichment period and some oxidative stress parameters, specifically the free radical levels, macromolecules damage and superoxide dismutase activity, in hippocampus and frontal cortex samples were determined. BDNF levels were also measured in the same encephalic structures. Indexes of macromolecules damage, TBARS levels and total cellular thiols, as well as free radical levels were unchanged in both studied structures. An increased SOD activity in the right hippocampus of HI group maintained in standard environment was found, this effect was reversed in HI enriched group. Moreover, BDNF levels were increased only in the hippocampus of non-stimulated HI group. These results suggest that the environmental enrichment protocol bearing cognitive protection is not associated to increases in BDNF expression nor SOD activity in hippocampus of the rats, as assessed in adulthood, submitted to neonatal hypoxia-ischemia.

Collaboration


Dive into the Patrícia Nardin's collaboration.

Top Co-Authors

Avatar

Carlos Alberto Saraiva Goncalves

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carlos-Alberto Gonçalves

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Marina Concli Leite

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carmem Gottfried

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

André Quincozes-Santos

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Daniela Fraga de Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ana Carolina Tramontina

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Lucas Silva Tortorelli

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Caroline Zanotto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Francine Tramontina

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge