Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Adamcakova-Dodd is active.

Publication


Featured researches published by Andrea Adamcakova-Dodd.


Environmental Health Perspectives | 2006

Inhalation Exposure Study of Titanium Dioxide Nanoparticles with a Primary Particle Size of 2 to 5 NM

Vicki H. Grassian; Patrick T. O'Shaughnessy; Andrea Adamcakova-Dodd; John M. Pettibone; Peter S. Thorne

Background Nanotechnology offers great promise in many industrial applications. However, little is known about the health effects of manufactured nanoparticles, the building blocks of nanomaterials. Objectives Titanium dioxide (TiO2) nanoparticles with a primary size of 2–5 nm have not been studied previously in inhalation exposure models and represent some of the smallest manufactured nanoparticles. The purpose of this study was to assess the toxicity of these nanoparticles using a murine model of lung inflammation and injury. Materials and Methods The properties of TiO2 nanoparticles as well as the characteristics of aerosols of these particles were evaluated. Mice were exposed to TiO2 nanoparticles in a whole-body exposure chamber acutely (4 hr) or subacutely (4 hr/day for 10 days). Toxicity in exposed mice was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase (LDH) activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Lungs were also evaluated for histopathologic changes Results Mice exposed acutely to 0.77 or 7.22 mg/m3 nanoparticles demonstrated minimal lung toxicity or inflammation. Mice exposed subacutely (8.88 mg/m3) and necropsied immediately and at week 1 or 2 postexposure had higher counts of total cells and alveolar macrophages in the BAL fluid compared with sentinels. However, mice recovered by week 3 postexposure. Other indicators were negative. Conclusions Mice subacutely exposed to 2–5 nm TiO2 nanoparticles showed a significant but moderate inflammatory response among animals at week 0, 1, or 2 after exposure that resolved by week 3 postexposure.


Particle and Fibre Toxicology | 2011

NANOSILVER INDUCES MINIMAL LUNG TOXICITY OR INFLAMMATION IN A SUBACUTE MURINE INHALATION MODEL

Larissa V. Stebounova; Andrea Adamcakova-Dodd; Jong Sung Kim; Heaweon Park; Patrick T. O'Shaughnessy; Vicki H. Grassian; Peter S. Thorne

BackgroundThere is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure.ResultsIn this study, mice were exposed sub-acutely by inhalation to well-characterized nanosilver (3.3 mg/m3, 4 hours/day, 10 days, 5 ± 2 nm primary size). Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage fluid. Lungs were evaluated for histopathologic changes and the presence of silver. In contrast to published in vitro studies, minimal inflammatory response or toxicity was found following exposure to nanosilver in our in vivo study. The median retained dose of nanosilver in the lungs measured by inductively coupled plasma - optical emission spectroscopy (ICP-OES) was 31 μg/g lung (dry weight) immediately after the final exposure, 10 μg/g following exposure and a 3-wk rest period and zero in sham-exposed controls. Dissolution studies showed that nanosilver did not dissolve in solutions mimicking the intracellular or extracellular milieu.ConclusionsMice exposed to nanosilver showed minimal pulmonary inflammation or cytotoxicity following sub-acute exposures. However, longer term exposures with higher lung burdens of nanosilver are needed to ensure that there are no chronic effects and to evaluate possible translocation to other organs.


Nanotoxicology | 2007

Inflammatory response of mice to manufactured titanium dioxide nanoparticles: Comparison of size effects through different exposure routes

Vicki H. Grassian; Andrea Adamcakova-Dodd; John M. Pettibone; Patrick I. O'shaughnessy; Peter S. Thorne

TiO2 is a widely used manufactured nanomaterial and the opportunity for human exposure makes it necessary to study its health implications. Using murine models for inflammation, size effects of inflammatory response in instillation and acute inhalation exposures of TiO2 nanoparticles with manufacturers’ average particles sizes of 5 and 21 nm were investigated. The properties of the primary nanoparticles, nanoparticle agglomerates aerosol and instillation solution for both sized nanoparticles were evaluated. Mice were acutely exposed in a whole-body exposure chamber or through nasal instillation and toxicity was assessed by enumeration of total and differential cells, determination of total protein, LDH activity and inflammatory cytokines in BAL fluid. Lungs were also evaluated for histopathological changes. Results show the larger TiO2 nanoparticles were found to be moderately, but significantly, more toxic. The nanoparticles had different agglomeration states which may be a factor as important as the surface and physical characteristics of the primary nanoparticles in determining toxicity.


Nanotoxicology | 2008

Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles

John M. Pettibone; Andrea Adamcakova-Dodd; Peter S. Thorne; Patrick T. O'Shaughnessy; Jamie A. Weydert; Vicki H. Grassian

We examined pulmonary inflammatory responses of mice following whole-body inhalation exposure to copper and iron nanoparticles in acute and sub-acute studies. Concentrations for sub-acute copper and iron exposures were 3.6 mg m−3. No significant pathology was found following acute exposure. Immediately following sub-acute exposure, both iron- and copper-exposed mice showed increased inflammation compared to sentinels. Copper nanoparticle-exposed mice had significantly higher lavage cytokines as well as perivasculitis and alveolitis. Three weeks post-exposure, all inflammatory markers decreased for iron nanoparticle-exposed mice, however, some remained elevated for copper-exposed mice. At biologically relevant pHs, in vitro studies showed that copper nanoparticles displayed a greater propensity for dissolution compared to iron. We conclude that the presence of dissolved ions, the concomitant formation of smaller nanoparticles and the absence of particles in stained lung sections immediately postexposure (inferring either translocation or more dispersed aerosol distribution) contributed to the increased inflammation observed in copper nanoparticle-exposed mice.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis

Shubha Murthy; Andrea Adamcakova-Dodd; Sarah S. Perry; Linda A. Tephly; Richard M. Keller; Nervana Metwali; David K. Meyerholz; Yongqiang Wang; Michael Glogauer; Peter S. Thorne; A. Brent Carter

The release of reactive oxygen species (ROS) and cytokines by alveolar macrophages has been demonstrated in asbestos-induced pulmonary fibrosis, but the mechanism linking alveolar macrophages to the pathogenesis is not known. The GTPase Rac1 is a second messenger that plays an important role in host defense. In this study, we demonstrate that Rac1 null mice are protected from asbestos-induced pulmonary fibrosis, as determined by histological and biochemical analysis. We hypothesized that Rac1 induced pulmonary fibrosis via generation of ROS. Asbestos increased TNF-alpha and ROS in a Rac1-dependent manner. TNF-alpha was elevated only 1 day after exposure, whereas ROS generation progressively increased in bronchoalveolar lavage cells obtained from wild-type (WT) mice. To determine whether ROS generation contributed to pulmonary fibrosis, we overexpressed catalase in WT monocytes and observed a decrease in ROS generation in vitro. More importantly, administration of catalase to WT mice attenuated the development of fibrosis in vivo. For the first time, these results demonstrate that Rac1 plays a crucial role in asbestos-induced pulmonary fibrosis. Moreover, it suggests that a simple intervention may be useful to prevent progression of the disease.


Particle and Fibre Toxicology | 2011

Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

Jong Sung Kim; Andrea Adamcakova-Dodd; Patrick T. O'Shaughnessy; Vicki H. Grassian; Peter S. Thorne

BackgroundHuman exposure to nanoparticles (NPs) and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu) NPs using a model of lung inflammation and host defense.MethodsWe used Klebsiella pneumoniae (K.p.) in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3) and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse). Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH) activity, and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid.ResultsCu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse).ConclusionsCu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection.


Toxicology in Vitro | 2013

Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials.

Jong Sung Kim; Thomas M. Peters; Patrick T. O’Shaughnessy; Andrea Adamcakova-Dodd; Peter S. Thorne

To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air-liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p<0.01) and significantly (p<0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo.


Environment International | 2014

The fate of inhaled 14C-labeled PCB11 and its metabolites in vivo

Xin Hu; Andrea Adamcakova-Dodd; Peter S. Thorne

BACKGROUND The production ban of polychlorinated biphenyl (PCB) technical mixtures has left the erroneous impression that PCBs exist only as legacy pollutants. Some lower-chlorinated PCBs are still being produced and contaminate both indoor and ambient air. OBJECTIVES To inform PCB risk assessment, we characterized lung uptake, distribution, metabolism and excretion of PCB11 as a signature compound for these airborne non-legacy PCBs. METHODS After delivering [(14)C]PCB11 to the lungs of male rats, radioactivity in 34 major tissues and 5 digestive matter compartments was measured at 12, 25, 50, 100, 200 and 720min postexposure, during which time the excreta and exhaled air were also collected. [(14)C]PCB11 and metabolites in lung, liver, blood, digestive matter, urine, feces, and adipose tissues were extracted separately to establish the metabolic profile of the disposition. RESULTS [(14)C]PCB11 was distributed rapidly to all tissues after 99.8% pulmonary uptake and quickly underwent extensive metabolism. The major tissue deposition of [(14)C]PCB11 and metabolites translocated from liver, blood and muscle to skin and adipose tissue 200min postexposure, while over 50% of administered dose was discharged via urine and feces within 12h. Elimination of the [(14)C]PCB11 and metabolites consisted of an initial fast phase (t½=9-33min) and a slower clearance phase to low concentrations. Phase II metabolites dominated in liver blood and excreta after 25min postexposure. CONCLUSIONS This study shows that PCB11 is completely absorbed after inhalation exposure and is rapidly eliminated from most tissues. Phase II metabolites dominated with a slower elimination rate than the PCB11 or phase I metabolites and thus can best serve as urine biomarkers of exposure.


Environmental Science & Technology | 2010

Time course of congener uptake and elimination in rats after short-term inhalation exposure to an airborne polychlorinated biphenyl (PCB) mixture

Xin Hu; Andrea Adamcakova-Dodd; Hans-Joachim Lehmler; Dingfei Hu; Izabela Kania-Korwel; Keri C. Hornbuckle; Peter S. Thorne

Despite the continued presence of PCBs in indoor and ambient air, few studies have investigated the inhalation route of exposure. While dietary exposure has declined, inhalation of the semivolatile, lower-chlorinated PCBs has risen in importance. We measured the uptake, distribution, and time course of elimination of inhaled PCB congeners to characterize the pulmonary route after short-term exposure. Vapor-phase PCBs were generated from Aroclor 1242 to a nose-only exposure system and characterized for congener levels and profiles. Rats were exposed via inhalation acutely (2.4 mg/m3 for 2 h) or subacutely (8.2 mg/m3, 2 hx10 days), after which pulmonary immune responses and PCB tissue levels were measured. Animals acutely exposed were euthanized at 0, 1, 3, 6, and 12 h post exposure to assess the time course of PCB uptake and elimination. Following rapid absorption and distribution, PCBs accumulated in adipose tissue but decayed in other tissues with half-lives increasing in liver (5.6 h)<lung (8.2 h)<brain (8.5 h)<blood (9.7 h). PCB levels were similar in lung, liver, and adipose tissue, lower in brain, and lowest in blood. Inhalation of the airborne PCB mixture contributed significantly to the body burden of lower-chlorinated congeners. Congeners detected in tissue were mostly ortho-substituted ranging from mono- to pentachlorobiphenyls. Selective uptake and elimination led to accumulation of a distinct congener spectrum in tissue. Minimal evidence of toxicity was observed.


Environment International | 2010

Development of a Synthetic PCB Mixture Resembling the Average Polychlorinated Biphenyl Profile in Chicago Air

Hongxia Zhao; Andrea Adamcakova-Dodd; Dingfei Hu; Keri C. Hornbuckle; Craig L. Just; Larry W. Robertson; Peter S. Thorne; Hans-Joachim Lehmler

Studies of environmental and toxic effects of polychlorinated biphenyls (PCBs) are ideally performed with PCB mixtures reflecting the composition of environmental PCB profiles to mimic actual effects and to account for complex interactions among individual PCB congeners. Unfortunately, only a few laboratory studies employing synthetic PCB mixtures have been reported, in part because of the challenges associated with the preparation of complex PCB mixtures containing many individual PCB congeners. The objective of this study was to develop a PCB mixture that resembles the average PCB profile recorded from 1996 to 2002 at a satellite station of the Integrated Atmospheric Deposition Network located at the Illinois Institute of Technology (IIT) in Chicago, Illinois, using commercial PCB mixtures. Initial simulations, using published Aroclor profiles, showed that a mixture containing 65% Aroclor 1242 and 35% Aroclor 1254 was a good approximation of the target profile. A synthetic Chicago air mixture (CAM) was prepared by mixing the respective Aroclors in this ratio, followed by GC/MS/MS analysis. Comparison of the PCB profile of the synthetic mixture with the target profile suggests that the synthetic PCB mixture is a good approximation of the average IIT Chicago air profiles (similarity coefficient cos θ = 0.82; average relative percent difference = 84%). The synthetic CAM was also a reasonable approximation of the average of 184 PCB profiles analyzed in 2007 at 37 sites throughout Chicago as part of the University of Iowa Superfund Basic Research Program (isbrp), with a cos θ of 0.70 and an average relative percent difference of 118%. While the CAM and the two Chicago air profiles contained primarily di- to pentachlorobiphenyls, higher chlorinated congeners, including congeners with seven or eight chlorine atoms, were underrepresented in the synthetic CAM. The calculated TCDD toxic equivalency quotients of the synthetic CAM (2.7 ng/mg PCB) and the IIT Chicago air profile (1.6 ng/mg PCB) were comparable, but lower by two orders of magnitude than the isbrp Chicago air profile (865 ng/mg PCB) due to surprisingly high PCB 126 levels in Chicago air. In contrast, the calculated neurotoxic equivalency quotients of the CAM (0.33 mg/mg PCB) and the two Chicago air profiles (0.44 and 0.30 mg/mg PCB, respectively) were similar. This study demonstrates the challenges and methods of creating and characterizing synthetic, environmental mixtures of PCBs.

Collaboration


Dive into the Andrea Adamcakova-Dodd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Pettibone

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge