Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Martello is active.

Publication


Featured researches published by Andrea Martello.


Journal of Immunology | 2008

The Vitamin D3/Hox-A10 Pathway Supports MafB Function during the Monocyte Differentiation of Human CD34+ Hemopoietic Progenitors

Claudia Gemelli; Claudia Orlandi; Tommaso Zanocco Marani; Andrea Martello; Tatiana Vignudelli; Francesco Ferrari; Monica Montanari; Sandra Parenti; Anna Testa; Alexis Grande; Sergio Ferrari

Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hemopoiesis, the conclusions of such studies are quite controversial given that they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion, whereas in others they implicate this transcription factor in the induction of monocyte-macrophage differentiation. To clarify this issue, we analyzed the biological effects and the transcriptome changes determined in human primary CD34+ hemopoietic progenitors by retroviral transduction of a full-length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of the MafB gene, recently identified as the master regulator of such a maturation pathway. By using a combined approach based on computational analysis, EMSA experiments, and luciferase assays, we were able to demonstrate the presence of a Hox-A10-binding site in the promoter region of the MafB gene, which suggested the likely molecular mechanism underlying the observed effect. Stimulation of the same cells with the vitamin D3 monocyte differentiation inducer resulted in a clear increase of Hox-A10 and MafB transcripts, indicating the existence of a precise transactivation cascade involving vitamin D3 receptor, Hox-A10, and MafB transcription factors. Altogether, these data allow one to conclude that the vitamin D3/Hox-A10 pathway supports MafB function during the induction of monocyte differentiation.


Molecular Biology of the Cell | 2010

ZFP36L1 Negatively Regulates Erythroid Differentiation of CD34+ Hematopoietic Stem Cells by Interfering with the Stat5b Pathway

Tatiana Vignudelli; Tommaso Selmi; Andrea Martello; Sandra Parenti; Alexis Grande; Claudia Gemelli; Tommaso Zanocco-Marani; Sergio Ferrari

ZFP36L1 negatively regulates erythroid differentiation of human hematopoietic progenitors by directly binding the 3′ UTR of Stat5b mRNA, thereby triggering its degradation. This study shows that posttranscriptional regulation is involved in the control of hematopoietic differentiation.


Cell Cycle | 2012

ZFP36 expression impairs glioblastoma cell lines viability and invasiveness by targeting multiple signal transduction pathways

Tommaso Selmi; Andrea Martello; Tatiana Vignudelli; Erika Ferrari; Alexis Grande; Claudia Gemelli; Paolo Salomoni; Sergio Ferrari; Tommaso Zanocco-Marani

RNA binding proteins belonging to the TIS11/TTP gene family regulate the stability of multiple targets. Their inactivation or deregulated expression has recently been related to cancer, and it has been suggested that they are capable of displaying tumor suppressor activities. Here we describe three new targets of ZFP36 (PIM-1, PIM-3 and XIAP) and show by different approaches that its ectopic expression is capable of impairing glioblastoma cell lines viability and invasiveness by interfering with different transduction pathways. Moreover, we provide evidence that compounds capable of inducing the expression of TIS11/TTP genes determine a comparable biological effect on the same cell contexts.


Experimental Cell Research | 2009

TFE3 transcription factor regulates the expression of MAFB during macrophage differentiation.

Tommaso Zanocco-Marani; Tatiana Vignudelli; Sandra Parenti; Claudia Gemelli; Fabrizio Condorelli; Andrea Martello; Tommaso Selmi; Alexis Grande; Sergio Ferrari

Transcription Factor for Immunoglobulin Heavy-Chain Enhancer 3 (Tfe3) is a transactivator of metabolic genes that are regulated through an EBox located in their promoters. It is involved in physiological processes such as osteoclast and macrophage differentiation, as well as in pathological processes such as translocations underlying different cancer diseases. MAFB is a basic region/leucine zipper transcription factor that affects transcription by binding specific DNA regions known as MARE. It plays a pivotal role in regulating lineage-specific hematopoiesis by repressing transcription of erythroid specific genes in myeloid cells and enhancing expression of macrophage and megakaryocytic genes. Here we have shown MAFB to be highly induced in human hematopoietic cells undergoing macrophage differentiation following Tfe3 ectopic expression, and to be down regulated, compared to the controls, in the same cell population following Phorbol Esters (PMA) dependent differentiation coupled to Tfe3 gene silencing. Electrophoretic mobility shift assays identified a Tfe3-binding site (EBox) in the MAFB promoter region that is conserved in different mammalian species. MAFB promoter was transactivated by co-expression of Tfe3 in reporter gene assays while deletion or mutation of the MAFB EBox prevented transactivation by Tfe3. Both of these genes were previously included in the group of transcription factors able to drive macrophage differentiation. The observation that MAFB belongs to the Tfe3 regulon suggests the existence of a pathway where these two gene families act synergistically to determine differentiation.


Journal of Medicinal Chemistry | 2014

Optimization of Peptides That Target Human Thymidylate Synthase to Inhibit Ovarian Cancer Cell Growth

Michela Pelà; Puneet Saxena; Rosaria Luciani; Matteo Santucci; Stefania Ferrari; Gaetano Marverti; Chiara Marraccini; Andrea Martello; Silvia Pirondi; Filippo Genovese; Severo Salvadori; Domenico D’Arca; Glauco Ponterini; Maria Paola Costi; Remo Guerrini

Thymidylate synthase (TS) is a target for pemetrexed and the prodrug 5-fluorouracil (5-FU) that inhibit the protein by binding at its active site. Prolonged administration of these drugs causes TS overexpression, leading to drug resistance. The peptide lead, LR (LSCQLYQR), allosterically stabilizes the inactive form of the protein and inhibits ovarian cancer (OC) cell growth with stable TS and decreased dihydrofolate reductase (DHFR) expression. To improve TS inhibition and the anticancer effect, we have developed 35 peptides by modifying the lead. The d-glutamine-modified peptide displayed the best inhibition of cisplatin-sensitive and -resistant OC cell growth, was more active than LR and 5-FU, and showed a TS/DHFR expression pattern similar to LR. Circular dichroism spectroscopy and molecular dynamics studies provided a molecular-level rationale for the differences in structural preferences and the enzyme inhibitory activities. By combining target inhibition studies and the modulation pattern of associated proteins, this work avenues a concept to develop more specific inhibitors of OC cell growth and drug leads.


Oncotarget | 2016

Loss of ZFP36 expression in colorectal cancer correlates to wnt/ β-catenin activity and enhances epithelial-to-mesenchymal transition through upregulation of ZEB1, SOX9 and MACC1

Lucia Montorsi; Filippo Guizzetti; Claudia Alecci; Andrea Caporali; Andrea Martello; Claudio Giacinto Atene; Sandra Parenti; Silvia Pizzini; Paola Zanovello; Stefania Bortoluzzi; Sergio Ferrari; Alexis Grande; Tommaso Zanocco-Marani

The mRNA-destabilizing protein ZFP36 has been previously described as a tumor suppressor whose expression is lost during colorectal cancer development. In order to evaluate its role in this disease, we restored ZFP36 expression in different cell contexts, showing that the presence of this protein impairs the epithelial-to-mesenchymal transition (EMT) and induces a higher susceptibility to anoikis. Consistently, we found that ZFP36 inhibits the expression of three key transcription factors involved in EMT: ZEB1, MACC1 and SOX9. Finally, we observed for the first time that its expression negatively correlates with the activity of Wnt/β-catenin pathway, which is constitutively activated in colorectal cancer. This evidence provides a clue on the mechanism leading to the loss of ZFP36 in CRC.


Experimental Cell Research | 2013

The Orosomucoid 1 protein is involved in the vitamin D - mediated macrophage de-activation process.

Claudia Gemelli; Andrea Martello; Monica Montanari; Tommaso Zanocco Marani; Valentina Salsi; Vincenzo Zappavigna; Sandra Parenti; Tatiana Vignudelli; Tommaso Selmi; Sergio Ferrari; Alexis Grande

Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3--VDR--ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling.


BMC Cancer | 2015

ZFP36 stabilizes RIP1 via degradation of XIAP and cIAP2 thereby promoting ripoptosome assembly

Tommaso Selmi; Claudia Alecci; Miriam dell’ Aquila; Lucia Montorsi; Andrea Martello; Filippo Guizzetti; Nicola Volpi; Sandra Parenti; Sergio Ferrari; Paolo Salomoni; Alexis Grande; Tommaso Zanocco-Marani

BackgroundZFP36 is an mRNA binding protein that exerts anti-tumor activity in glioblastoma by triggering cell death, associated to an increase in the stability of the kinase RIP1.MethodsWe used cell death assays, size exclusion chromatography, Co-Immunoprecipitation, shRNA lentivectors and glioma neural stem cells to determine the effects of ZFP36 on the assembly of a death complex containing RIP1 and on the induction of necroptosis.ResultsHere we demonstrate that ZFP36 promotes the assembly of the death complex called Ripoptosome and induces RIP1-dependent death. This involves the depletion of the ubiquitine ligases cIAP2 and XIAP and leads to the association of RIP1 to caspase-8 and FADD. Moreover, we show that ZFP36 controls RIP1 levels in glioma neural stem cell lines.ConclusionsWe provide a molecular mechanism for the tumor suppressor role of ZFP36, and the first evidence for Ripoptosome assembly following ZFP36 expression. These findings suggest that ZFP36 plays an important role in RIP1-dependent cell death in conditions where IAPs are depleted.


Nucleic Acids Research | 2013

Translational repression of thymidylate synthase by targeting its mRNA

Divita Garg; Alexander V. Beribisky; Glauco Ponterini; Alessio Ligabue; Gaetano Marverti; Andrea Martello; M. Paola Costi; Michael Sattler; Rebecca C. Wade

Resistance to drugs targeting human thymidylate synthase (TS) poses a major challenge in the field of anti-cancer therapeutics. Overexpression of the TS protein has been implicated as one of the factors leading to the development of resistance. Therefore, repressing translation by targeting the TS mRNA could help to overcome this problem. In this study, we report that the compound Hoechst 33258 (HT) can reduce cellular TS protein levels without altering TS mRNA levels, suggesting that it modulates TS expression at the translation level. We have combined nuclear magnetic resonance, UV-visible and fluorescence spectroscopy methods with docking and molecular dynamics simulations to study the interaction of HT with a region in the TS mRNA. The interaction predominantly involves intercalation of HT at a CC mismatch in the region near the translational initiation site. Our results support the use of HT-like compounds to guide the design of therapeutic agents targeting TS mRNA.


Scientific Reports | 2016

Intracellular quantitative detection of human thymidylate synthase engagement with an unconventional inhibitor using tetracysteine-diarsenical-probe technology

Glauco Ponterini; Andrea Martello; Giorgia Pavesi; Angela Lauriola; Rosaria Luciani; Matteo Santucci; Michela Pelà; Gaia Gozzi; Salvatore Pacifico; Remo Guerrini; Gaetano Marverti; Maria Paola Costi; Domenico D’Arca

Demonstrating a candidate drug’s interaction with its target protein in live cells is of pivotal relevance to the successful outcome of the drug discovery process. Although thymidylate synthase (hTS) is an important anticancer target protein, the efficacy of the few anti-hTS drugs currently used in clinical practice is limited by the development of resistance. Hence, there is an intense search for new, unconventional anti-hTS drugs; there are approximately 1600 ongoing clinical trials involving hTS-targeting drugs, both alone and in combination protocols. We recently discovered new, unconventional peptidic inhibitors of hTS that are active against cancer cells and do not result in the overexpression of hTS, which is a known molecular source of resistance. Here, we propose an adaptation of the recently proposed tetracysteine-arsenic-binding-motif technology to detect and quantitatively characterize the engagement of hTS with one such peptidic inhibitor in cell lysates. This new model can be developed into a test for high-throughput screening studies of intracellular target-protein/small-molecule binding.

Collaboration


Dive into the Andrea Martello's collaboration.

Top Co-Authors

Avatar

Alexis Grande

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sergio Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sandra Parenti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Claudia Gemelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Gaetano Marverti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Tatiana Vignudelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Tommaso Selmi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Tommaso Zanocco-Marani

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Domenico D’Arca

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Glauco Ponterini

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge