Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Kirmaier is active.

Publication


Featured researches published by Andrea Kirmaier.


PLOS Biology | 2010

TRIM5 Suppresses Cross-Species Transmission of a Primate Immunodeficiency Virus and Selects for Emergence of Resistant Variants in the New Species

Andrea Kirmaier; Fan Wu; Ruchi M. Newman; Laura R. Hall; Jennifer S. Morgan; Shelby L. O'Connor; Preston A. Marx; Mareike Meythaler; Simoy Goldstein; Alicia Buckler-White; Amitinder Kaur; Vanessa M. Hirsch; Welkin E. Johnson

Cross-species transmission of simian immunodeficiency virus from sooty mangabeys (SIVsm) into rhesus macaques, and subsequent emergence of pathogenic SIVmac, required adaptation to overcome restriction encoded by the macaque TRIM5 gene.


PLOS Pathogens | 2008

Evolution of a TRIM5-CypA splice isoform in old world monkeys

Ruchi M. Newman; Laura R. Hall; Andrea Kirmaier; Lu-Ann Pozzi; Erez Pery; Michael Farzan; Shawn P. O'Neil; Welkin E. Johnson

The TRIM family proteins share a conserved arrangement of three adjacent domains, an N-terminal RING domain, followed by one or two B-boxes and a coiled-coil, which constitutes the tripartite-motif for which the family is named. However, the C-termini of TRIM proteins vary, and include at least nine evolutionarily distinct, unrelated protein domains. Antiviral restriction factor TRIM5α has a C-terminal B30.2/SPRY domain, which is the major determinant of viral target specificity. Here, we describe the evolution of a cyclophilin-A encoding exon downstream of the TRIM5 locus of Asian macaques. Alternative splicing gives rise to chimeric transcripts encoding the TRIM motif fused to a C-terminal CypA domain (TRIM5-CypA). We detected TRIM5-CypA chimeric transcripts in primary lymphocytes from two macaque species. These were derived in part from a CypA pseudogene in the TRIM5 locus, which is distinct from the previously described CypA insertion in TRIM5 of owl monkeys. The CypA insertion is linked to a mutation in the 3′ splice site upstream of exon 7, which may prevent or reduce expression of the α-isoform. All pig-tailed macaques (M. nemestrina) screened were homozygous for the CypA insertion. In contrast, the CypA-containing allele was present in 17% (17/101) of rhesus macaques (M. mulatta). The block to HIV-1 infection in lymphocytes from animals bearing the TRIM5-CypA allele was weaker than that in cells from wild type animals. HIV-1 infectivity remained significantly lower than SIV infectivity, but was not rescued by treatment with cyclosporine A. Thus, unlike owl monkey TRIMCyp, expression of the macaque TRIM5-CypA isoform does not result in increased restriction of HIV-1. Despite its distinct evolutionary origin, Macaca TRIM5-CypA has a similar domain arrangement and shares ∼80% amino-acid identity with the TRIMCyp protein of owl monkeys. The independent appearance of TRIM5-CypA chimeras in two primate lineages constitutes a remarkable example of convergent evolution. Based on the presence of the CypA insertion in separate macaque lineages, and its absence from sooty mangabeys, we estimate that the Macaca TRIM5-CypA variant appeared 5–10 million years ago in a common ancestor of the Asian macaques. Whether the formation of novel genes through alternative splicing has played a wider role in the evolution of the TRIM family remains to be investigated.


PLOS Pathogens | 2013

Gain-of-Sensitivity Mutations in a Trim5-Resistant Primary Isolate of Pathogenic SIV Identify Two Independent Conserved Determinants of Trim5α Specificity

Kevin R. McCarthy; Aaron G. Schmidt; Andrea Kirmaier; Allison L. Wyand; Ruchi M. Newman; Welkin E. Johnson

Retroviral capsid recognition by Trim5 blocks productive infection. Rhesus macaques harbor three functionally distinct Trim5 alleles: Trim5αQ, Trim5αTFP and Trim5CypA. Despite the high degree of amino acid identity between Trim5αQ and Trim5αTFP alleles, the Q/TFP polymorphism results in the differential restriction of some primate lentiviruses, suggesting these alleles differ in how they engage these capsids. Simian immunodeficiency virus of rhesus macaques (SIVmac) evolved to resist all three alleles. Thus, SIVmac provides a unique opportunity to study a virus in the context of the Trim5 repertoire that drove its evolution in vivo. We exploited the evolved rhesus Trim5α resistance of this capsid to identify gain-of-sensitivity mutations that distinguish targets between the Trim5αQ and Trim5αTFP alleles. While both alleles recognize the capsid surface, Trim5αQ and Trim5αTFP alleles differed in their ability to restrict a panel of capsid chimeras and single amino acid substitutions. When mapped onto the structure of the SIVmac239 capsid N-terminal domain, single amino acid substitutions affecting both alleles mapped to the β-hairpin. Given that none of the substitutions affected Trim5αQ alone, and the fact that the β-hairpin is conserved among retroviral capsids, we propose that the β-hairpin is a molecular pattern widely exploited by Trim5α proteins. Mutations specifically affecting rhesus Trim5αTFP (without affecting Trim5αQ) surround a site of conservation unique to primate lentiviruses, overlapping the CPSF6 binding site. We believe targeting this site is an evolutionary innovation driven specifically by the emergence of primate lentiviruses in Africa during the last 12 million years. This modularity in targeting may be a general feature of Trim5 evolution, permitting different regions of the PRYSPRY domain to evolve independent interactions with capsid.


PLOS Pathogens | 2013

TRIM5 alpha drives SIVsmm evolution in rhesus macaques.

Fan Wu; Andrea Kirmaier; Robert Goeken; Ilnour Ourmanov; Laura R. Hall; Jennifer S. Morgan; Kenta Matsuda; Alicia Buckler-White; Keiko Tomioka; Ronald J. Plishka; Sonya Whitted; Welkin E. Johnson; Vanessa M. Hirsch

The antagonistic interaction with host restriction proteins is a major driver of evolutionary change for viruses. We previously reported that polymorphisms of the TRIM5α B30.2/SPRY domain impacted the level of SIVsmm viremia in rhesus macaques. Viremia in macaques homozygous for the non-restrictive TRIM5α allele TRIM5Q was significantly higher than in macaques expressing two restrictive TRIM5alpha alleles TRIM5TFP/TFP or TRIM5Cyp/TFP. Using this model, we observed that despite an early impact on viremia, SIVsmm overcame TRIM5α restriction at later stages of infection and that increasing viremia was associated with specific amino acid substitutions in capsid. Two amino acid substitutions (P37S and R98S) in the capsid region were associated with escape from TRIM5TFP restriction and substitutions in the CypA binding-loop (GPLPA87-91) in capsid were associated with escape from TRIM5Cyp. Introduction of these mutations into the original SIVsmE543 clone not only resulted in escape from TRIM5α restriction in vitro but the P37S and R98S substitutions improved virus fitness in macaques with homozygous restrictive TRIMTFP alleles in vivo. Similar substitutions were observed in other SIVsmm strains following transmission and passage in macaques, collectively providing direct evidence that TRIM5α exerts selective pressure on the cross-species transmission of SIV in primates.


PLOS Pathogens | 2015

Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface

Kevin R. McCarthy; Andrea Kirmaier; Patrick Autissier; Welkin E. Johnson

The widespread distribution of lentiviruses among African primates, and the lack of severe pathogenesis in many of these natural reservoirs, are taken as evidence for long-term co-evolution between the simian immunodeficiency viruses (SIVs) and their primate hosts. Evidence for positive selection acting on antiviral restriction factors is consistent with virus-host interactions spanning millions of years of primate evolution. However, many restriction mechanisms are not virus-specific, and selection cannot be unambiguously attributed to any one type of virus. We hypothesized that the restriction factor TRIM5, because of its unique specificity for retrovirus capsids, should accumulate adaptive changes in a virus-specific fashion, and therefore, that phylogenetic reconstruction of TRIM5 evolution in African primates should reveal selection by lentiviruses closely related to modern SIVs. We analyzed complete TRIM5 coding sequences of 22 Old World primates and identified a tightly-spaced cluster of branch-specific adaptions appearing in the Cercopithecinae lineage after divergence from the Colobinae around 16 million years ago. Functional assays of both extant TRIM5 orthologs and reconstructed ancestral TRIM5 proteins revealed that this cluster of adaptations in TRIM5 specifically resulted in the ability to restrict Cercopithecine lentiviruses, but had no effect (positive or negative) on restriction of other retroviruses, including lentiviruses of non-Cercopithecine primates. The correlation between lineage-specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of Cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity.


Oncotarget | 2015

Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif

Allison M. Land; Jiayi Wang; Emily K. Law; Ryan Aberle; Andrea Kirmaier; Annabel Krupp; Welkin E. Johnson; Reuben S. Harris

APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.


Journal of Virology | 2016

TRIM5α Resistance Escape Mutations in the Capsid Are Transferable between Simian Immunodeficiency Virus Strains.

Fan Wu; Andrea Kirmaier; Ellen White; Ilnour Ourmanov; Sonya Whitted; Kenta Matsuda; Nadeene E. Riddick; Laura R. Hall; Jennifer S. Morgan; Ronald J. Plishka; Alicia Buckler-White; Welkin E. Johnson; Vanessa M. Hirsch

ABSTRACT TRIM5α polymorphism limits and complicates the use of simian immunodeficiency virus (SIV) for evaluation of human immunodeficiency virus (HIV) vaccine strategies in rhesus macaques. We previously reported that the TRIM5α-sensitive SIV from sooty mangabeys (SIVsm) clone SIVsmE543-3 acquired amino acid substitutions in the capsid that overcame TRIM5α restriction when it was passaged in rhesus macaques expressing restrictive TRIM5α alleles. Here we generated TRIM5α-resistant clones of the related SIVsmE660 strain without animal passage by introducing the same amino acid capsid substitutions. We evaluated one of the variants in rhesus macaques expressing permissive and restrictive TRIM5α alleles. The SIVsmE660 variant infected and replicated in macaques with restrictive TRIM5α genotypes as efficiently as in macaques with permissive TRIM5α genotypes. These results demonstrated that mutations in the SIV capsid can confer SIV resistance to TRIM5α restriction without animal passage, suggesting an applicable method to generate more diverse SIV strains for HIV vaccine studies. IMPORTANCE Many strains of SIV from sooty mangabey monkeys are susceptible to resistance by common rhesus macaque TRIM5α alleles and result in reduced virus acquisition and replication in macaques that express these restrictive alleles. We previously observed that spontaneous variations in the capsid gene were associated with improved replication in macaques, and the introduction of two amino acid changes in the capsid transfers this improved replication to the parent clone. In the present study, we introduced these mutations into a related but distinct strain of SIV that is commonly used for challenge studies for vaccine trials. These mutations also improved the replication of this strain in macaques with the restrictive TRIM5α genotype and thus will eliminate the confounding effects of TRIM5α in vaccine studies.


PLOS ONE | 2016

Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa.

Kevin R. McCarthy; Welkin E. Johnson; Andrea Kirmaier

In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm). Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac) and pig-tailed macaques (SIVmne) have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa) were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.


Trends in Microbiology | 2014

Monkey-adapted HIV-1 highlights in vivo significance of restriction factors

Andrea Kirmaier; Welkin E. Johnson

HIV-1 was isolated 31 years ago, yet models for studying HIV-1 pathogenesis in vivo are still lacking. Recent experiments using an HIV-1 strain engineered to replicate in macaques recapitulate several important features of human AIDS, and provide insight into the genetics of cross-species transmission and emergence of pathogenic retroviruses.


Methods | 2009

Acquisition and processing of nonhuman primate samples for genetic and phylogenetic analyses

Andrea Kirmaier; William E. Diehl; Welkin E. Johnson

Primates have long been a favorite subject of evolutionary biologists, and in recent decades, have come to play an increasingly important role in biomedical research, including comparative genetics and phylogenetics. The growing list of annotated genome databases from nonhuman primate species is expected to aid in these endeavors, allowing many analyses to be performed partially or even entirely in silico. However, whole genome sequence data are typically derived from only one, or at best a few, individuals. As a consequence, information in the databases does not capture variation within species or populations, nor can the sequence of one individual be taken as representative across all loci. Furthermore, the vast majority of primate species have not been sequenced, and only a small percentage of species are currently slated for whole genome sequencing efforts. Finally, for many species data on patterns and levels of RNA expression will be lacking. Thus, there will continue to be a demand for samples from nonhuman primates as raw material for genetic and phylogenetic analyses. Gathering such samples can be complicated, with many legal and practical barriers to obtaining samples in the field or transporting samples between research centers and across borders. Here, we provide basic but critical advice for those initiating studies requiring genetic material from nonhuman primates, including some guidance on how to locate and obtain samples, brief overviews of common protocols for handling and processing samples, and a table of useful links for locating resources related to the acquisition of samples. We also advocate for the creation of curated banks of nonhuman primate samples, particularly renewable sources of genetic material such as immortalized cell lines or fibroblasts, to reduce the need for repeated or redundant sampling from living animals.

Collaboration


Dive into the Andrea Kirmaier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Buckler-White

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fan Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa M. Hirsch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ilnour Ourmanov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kenta Matsuda

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge