Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Magrin is active.

Publication


Featured researches published by Andrea Magrin.


Journal of Seismology | 2014

Neo-deterministic seismic hazard assessment in North Africa

T. Mourabit; K. M. Abou Elenean; A. Ayadi; D. Benouar; A. Ben Suleman; Mourad Bezzeghoud; A. Cheddadi; M. Chourak; Mohamed N. ElGabry; A. Harbi; M. Hfaiedh; H. M. Hussein; J. Kacem; A. Ksentini; N. Jabour; Andrea Magrin; S. Maouche; M. Meghraoui; F. Ousadou; G. F. Panza; Antonella Peresan; N. Romdhane; Franco Vaccari; E. Zuccolo

North Africa is one of the most earthquake-prone areas of the Mediterranean. Many devastating earthquakes, some of them tsunami-triggering, inflicted heavy loss of life and considerable economic damage to the region. In order to mitigate the destructive impact of the earthquakes, the regional seismic hazard in North Africa is assessed using the neo-deterministic, multi-scenario methodology (NDSHA) based on the computation of synthetic seismograms, using the modal summation technique, at a regular grid of 0.2 × 0.2°. This is the first study aimed at producing NDSHA maps of North Africa including five countries: Morocco, Algeria, Tunisia, Libya, and Egypt. The key input data for the NDSHA algorithm are earthquake sources, seismotectonic zonation, and structural models. In the preparation of the input data, it has been really important to go beyond the national borders and to adopt a coherent strategy all over the area. Thanks to the collaborative efforts of the teams involved, it has been possible to properly merge the earthquake catalogues available for each country to define with homogeneous criteria the seismogenic zones, the characteristic focal mechanism associated with each of them, and the structural models used to model wave propagation from the sources to the sites. As a result, reliable seismic hazard maps are produced in terms of maximum displacement (Dmax), maximum velocity (Vmax), and design ground acceleration.


Natural Hazards | 2013

The SISMA prototype system: integrating Geophysical Modeling and Earth Observation for time dependent seismic hazard assessment

G. F. Panza; Antonella Peresan; Andrea Magrin; Franco Vaccari; Roberto Sabadini; Bruno Crippa; Anna Maria Marotta; Raffaele Splendore; Riccardo Barzaghi; Alessandra Borghi; Letizia Cannizzaro; A. Amodio; S. Zoffoli

An innovative approach to seismic hazard assessment is illustrated that, based on the available knowledge of the physical properties of the Earth structure and of seismic sources, on geodetic observations, as well as on the geophysical forward modeling, allows for a time-dependent definition of the seismic input. According to the proposed approach, a fully formalized system integrating Earth Observation data and new advanced methods in seismological and geophysical data analysis is currently under development in the framework of the Pilot Project SISMA, funded by the Italian Space Agency. The synergic use of geodetic Earth Observation data (EO) and Geophysical Forward Modeling deformation maps at the national scale complements the space- and time-dependent information provided by real-time monitoring of seismic flow (performed by means of the earthquake prediction algorithms CN and M8S) and permits the identification and routine updating of alerted areas. At the local spatial scale (tens of km) of the seismogenic nodes identified by pattern-recognition analysis, both GNSS (Global Navigation Satellite System) and SAR (Synthetic Aperture Radar) techniques, coupled with expressly developed models for interseismic phase, allow us to retrieve the deformation style and stress evolution within the seismogenic areas. The displacement fields obtained from EO data provide the input for the geophysical modeling, which eventually permits to indicate whether a specific fault is in a “critical state.” The scenarios of expected ground motion (shakemaps) associated with the alerted areas are then defined by means of full waveforms modeling, based on the possibility to compute synthetic seismograms by the modal summation technique (neo-deterministic hazard assessment). In this way, a set of deterministic scenarios of ground motion, which refer to the time interval when a strong event is likely to occur within the alerted area, can be defined both at national and at local scale. The considered integrated approach opens new routes in understanding the dynamics of fault zones as well as in modeling the expected ground motion. The SISMA system, in fact, provides tools for establishing warning criteria based on deterministic and rigorous forward geophysical models and hence allows for a well-controlled real-time prospective testing and validation of the proposed methodology over the Italian territory. The proposed approach complements the traditional probabilistic approach for seismic hazard estimates, since it supplies routinely updated information useful in assigning priorities for timely mitigation actions and hence it is particularly relevant to Civil Defense purposes.


WIT Transactions on the Built Environment | 2013

Earthquake recurrence and seismic hazard assessment: a comparative analysis over the Italian territory

Antonella Peresan; Andrea Magrin; A. K. Nekrasova; Vladimir Kossobokov; G. F. Panza

Rigorous and objective testing of seismic hazard assessments against real seismic activity are a necessary precondition for any responsible seismic risk assessment. The reference hazard maps for the Italian seismic code, obtained with the classical probabilistic approach (PSHA) and the alternative ground shaking maps based on the neo-deterministic approach (NDSHA) are crosscompared and tested against the real seismicity for the territory of Italy. NDSHA is a methodology that allows for the sound definition of credible scenario events, based on the realistic physical modelling of ground motion from a wide set of possible earthquakes. The flexibility of NDSHA permits to account for earthquake recurrence and allows for the generation of ground motion maps at specified return periods that permits a straightforward comparison between the NDSHA and the PSHA maps.


International Journal of Earthquake and Impact Engineering | 2016

Broadband NDSHA computations and earthquake ground motion observations for the Italian territory

Andrea Magrin; A. A. Gusev; Fabio Romanelli; Franco Vaccari; Giuliano Panza

The aim of this work is two-fold: 1) to compare the results of national scale NDSHA modelling for the Italian region at 10 Hz cut-off, based on the relevant available knowledge, with observations (e.g., peak ground motion values) and existing empirical attenuation relations; 2) to update the scaling law for source spectra (SLSS) to be used for the selected area. The new set of source spectra, defined along the lines suggested by the comparison with empirical attenuation relations, produces acceptable results in terms of PGV and spectral acceleration at long periods. Synthetic PGA and SA at short periods show a faster attenuation with respect to the observed ones and, therefore, the effect of complex attenuation factors should be explored in future ad hoc studies.


Journal of Seismology | 2017

Neo-deterministic seismic hazard scenarios for India???a preventive tool for disaster mitigation

Imtiyaz A. Parvez; Andrea Magrin; Franco Vaccari; Ashish; Ramees R. Mir; Antonella Peresan; Giuliano Panza

Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489–508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93–165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489–508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.


International Journal of Earthquake and Impact Engineering | 2016

A seismological and engineering perspective on the 2016 Central Italy earthquakes

Marco Fasan; Andrea Magrin; Claudio Amadio; Fabio Romanelli; Franco Vaccari; G. F. Panza

The strong earthquake (M 6.0-6.2) that hit the central Apennines on August 24, 2016, occurred in one of the most seismically active areas in Italy. Field surveys indicated severe damage in the epicentral area where, in addition to the loss of human life, widespread destruction of cultural heritage and of critical buildings occurred. Using the neo-deterministic seismic hazard assessment (NDSHA), we apply the maximum deterministic seismic input (MDSI) procedure at two of the most relevant sites in the epicentral area, comparing the results with the current Italian building code. After performing an expeditious engineering analysis, we interpret as a possible cause of the reported damages the high seismic vulnerability of the built environment, combined with the source and site effects characterising the seismic input. Therefore, it is important to design and retrofit with appropriate spectral acceleration levels compatible with the possible future scenarios, like the ones provided by MDSI.


SPRINGER NATURAL HAZARDS | 2016

Neo-deterministic Definition of Seismic and Tsunami Hazard Scenarios for the Territory of Gujarat (India)

Andrea Magrin; I. A. Parvez; Franco Vaccari; A. Peresan; B. K. Rastogi; S. Cozzini; D. Bisignano; Fabio Romanelli; Ashish; P. Choudhury; K. S. Roy; R. R. Mir; G. F. Panza

A reliable and comprehensive characterization of expected seismic ground shaking is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. So far, one of the major problems in classical methods for seismic hazard assessment consisted in the adequate characterization of the attenuation models, which may be unable to account for the complexity of the medium and of the seismic sources and are often weakly constrained by the available observations. Current computational resources and physical knowledge of the seismic waves generation and propagation processes allow nowadays for viable numerical and analytical alternatives to the use of attenuation relations. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic approach (NDSHA), which allows considering a wide range of possible seismic sources as the starting point for deriving scenarios by means of full waveforms modelling. The method does not make use of attenuation relations and, thanks to advanced computational infrastructures, permits to carry on parametric analysis and stability tests that contribute characterizing the related uncertainties, as well as to fill in the unavoidable gaps in available observations. Results from preliminary application of NDSHA method to regional scale seismic hazard assessment (ground motion at bedrock) and tsunami scenarios modelling for the Gujarat territory are illustrated. The resulting estimates are compared with available information about intensities from past earthquakes, as well as with recently developed probabilistic seismic hazard map of Gujarat.


Journal of Seismology | 2018

A study on off-fault aftershock pattern at N-Adria microplate

Gianni Bressan; Carla Barnaba; Andrea Magrin; Giuliana Rossi

The spatial features of the aftershock sequences triggered by three moderate magnitude events with coda-duration magnitudes 4.1, 5.1 and 5.6, which occurred in Northeastern Italy and Western Slovenia, were investigated. The fractal dimension and the orientations of the planar features fitting the hypocentral data have been inferred. The spatial organization is articulated through two temporal phases. The first phase is characterized by the decreasing of the fractal dimension and by vertically oriented planes fitting the hypocentral foci. The second phase is marked by an increase of the fractal dimension and by the activation of different planes, with more widespread orientation. The aftershock temporal distribution is analysed with a model based on a static fatigue process. The process is favoured by the decrease of the overburden pressure, the sharp variations of the mechanical properties of the medium and the unclamping effect resulting from positive normal stress changes caused by the mainshock stress step.


Archive | 2014

Seismic Hazard Assesment: Parametric Studies on Grid Infrastructures

Andrea Magrin; Cristina La Mura; Franco Vaccari; G. F. Panza; A. A. Gusev; Iztok Gregori; Stefano Cozzini

Seismic hazard assessment can be performed following a neo-deterministic approach (NDSHA), which allows to give a realistic description of the seismic ground motion due to an earthquake of given distance and magnitude. The approach is based on modelling techniques that have been developed from a detailed knowledge of both the seismic source process and the propagation of seismic waves. This permits us to define a set of earthquake scenarios and to simulate the associated synthetic signals without having to wait for a strong event to occur. NDSHA can be applied at the regional scale, computing seismograms at the nodes of a grid with the desired spacing, or at the local scale, taking into account the source characteristics, the path and local geological and geotechnical conditions. Synthetic signals can be produced in a short time and at a very low cost/benefit ratio. They can be used as seismic input in subsequent engineering analyses aimed at the computation of the full non-linear seismic response of the structure or simply the earthquake damaging potential. Massive parametric tests, to explore the influence not only of deterministic source parameters and structural models but also of random properties of the same source model, enable realistic estimate of seismic hazard and their uncertainty. This is particular true in those areas for which scarce (or no) historical or instrumental information is available. Here we describe the implementation of the seismological codes and the results of some parametric tests performed using the EU-India Grid infrastructure.


Natural Hazards | 2014

The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory

A. K. Nekrasova; Vladimir Kossobokov; Antonella Peresan; Andrea Magrin

Collaboration


Dive into the Andrea Magrin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuliano Panza

China Earthquake Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed N. ElGabry

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Stefano Cozzini

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

A. A. Gusev

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge