Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Peresan is active.

Publication


Featured researches published by Antonella Peresan.


Earthquake Hazard, Risk and Disasters | 2014

Why are the Standard Probabilistic Methods of Estimating Seismic Hazard and Risks Too Often Wrong

Giuliano Panza; Vladimir Kossobokov; Antonella Peresan; A. K. Nekrasova

Abstract According to the probabilistic seismic hazard analysis (PSHA) approach, the deterministically evaluated or historically defined largest credible earthquakes (often referred to as Maximum Credible Earthquakes, MCEs) are “an unconvincing possibility” and are treated as “likely impossibilities” within individual seismic zones. However, globally over the last decade such events keep occurring where PSHA predicted seismic hazard to be low. Systematic comparison of the observed ground shaking with the expected one reported by the Global Seismic Hazard Assessment Program (GSHAP) maps discloses gross underestimation worldwide. Several inconsistencies with available observation are found also for national scale PSHA maps (including Italy), developed using updated data sets. As a result, the expected numbers of fatalities in recent disastrous earthquakes have been underestimated by these maps by approximately two to three orders of magnitude. The total death toll in 2000–2011 (which exceeds 700,000 people, including tsunami victims) calls for a critical reappraisal of GSHAP results, as well as of the underlying methods. In this chapter, we discuss the limits in the formulation and use of PSHA, addressing some theoretical and practical issues of seismic hazard assessment, which range from the overly simplified assumption that one could reduce the tensor problem of seismic-wave generation and propagation into a scalar problem (as implied by ground motion prediction equations), to the insufficient size and quality of earthquake catalogs for a reliable probability modeling at the local scale. Specific case studies are discussed, which may help to better understand the practical relevance of the mentioned issues. The aim is to present a critical overview of different approaches, analyses, and observations in order to provide the readers with some general considerations and constructive ideas toward improved seismic hazard and effective risk assessment. Specifically, we show that seismic hazard analysis based on credible scenarios for real earthquakes, defined as neo-deterministic seismic hazard analysis, provides a robust alternative approach for seismic hazard and risk assessment. Therefore, it should be extensively tested as a suitable method for formulating scientifically sound and realistic public policy and building code practices.


Eos, Transactions American Geophysical Union | 2012

Improving earthquake hazard assessments in Italy: An alternative to “Texas sharpshooting”

Antonella Peresan; Giuliano Panza

The 20 May 2012 M = 6.1 earthquake that struck the Emilia region of northern Italy illustrates a common problem afflicting earthquake hazard assessment. It occurred in an area classified as “low seismic hazard” based on the current national seismic hazard map (Gruppo di Lavoro, Redazione della mappa di pericolosita sismica, rapporto conclusivo, 2004, http://zonesismiche.mi.ingv.it/mappa_ps_apr04/italia.html) adopted in 2006. That revision of the seismic code was motivated by the 2002 M = 5.7 earthquake that struck S. Giuliano di Puglia in central Italy, also a previously classified low-hazard area, resulting in damage and casualties. Previous code was updated in 1981–1984 after earlier maps missed the 1980 M = 6.5 Irpinia earthquake.


Journal of Seismology | 2014

Neo-deterministic seismic hazard assessment in North Africa

T. Mourabit; K. M. Abou Elenean; A. Ayadi; D. Benouar; A. Ben Suleman; Mourad Bezzeghoud; A. Cheddadi; M. Chourak; Mohamed N. ElGabry; A. Harbi; M. Hfaiedh; H. M. Hussein; J. Kacem; A. Ksentini; N. Jabour; Andrea Magrin; S. Maouche; M. Meghraoui; F. Ousadou; G. F. Panza; Antonella Peresan; N. Romdhane; Franco Vaccari; E. Zuccolo

North Africa is one of the most earthquake-prone areas of the Mediterranean. Many devastating earthquakes, some of them tsunami-triggering, inflicted heavy loss of life and considerable economic damage to the region. In order to mitigate the destructive impact of the earthquakes, the regional seismic hazard in North Africa is assessed using the neo-deterministic, multi-scenario methodology (NDSHA) based on the computation of synthetic seismograms, using the modal summation technique, at a regular grid of 0.2 × 0.2°. This is the first study aimed at producing NDSHA maps of North Africa including five countries: Morocco, Algeria, Tunisia, Libya, and Egypt. The key input data for the NDSHA algorithm are earthquake sources, seismotectonic zonation, and structural models. In the preparation of the input data, it has been really important to go beyond the national borders and to adopt a coherent strategy all over the area. Thanks to the collaborative efforts of the teams involved, it has been possible to properly merge the earthquake catalogues available for each country to define with homogeneous criteria the seismogenic zones, the characteristic focal mechanism associated with each of them, and the structural models used to model wave propagation from the sources to the sites. As a result, reliable seismic hazard maps are produced in terms of maximum displacement (Dmax), maximum velocity (Vmax), and design ground acceleration.


Natural Hazards | 2013

The SISMA prototype system: integrating Geophysical Modeling and Earth Observation for time dependent seismic hazard assessment

G. F. Panza; Antonella Peresan; Andrea Magrin; Franco Vaccari; Roberto Sabadini; Bruno Crippa; Anna Maria Marotta; Raffaele Splendore; Riccardo Barzaghi; Alessandra Borghi; Letizia Cannizzaro; A. Amodio; S. Zoffoli

An innovative approach to seismic hazard assessment is illustrated that, based on the available knowledge of the physical properties of the Earth structure and of seismic sources, on geodetic observations, as well as on the geophysical forward modeling, allows for a time-dependent definition of the seismic input. According to the proposed approach, a fully formalized system integrating Earth Observation data and new advanced methods in seismological and geophysical data analysis is currently under development in the framework of the Pilot Project SISMA, funded by the Italian Space Agency. The synergic use of geodetic Earth Observation data (EO) and Geophysical Forward Modeling deformation maps at the national scale complements the space- and time-dependent information provided by real-time monitoring of seismic flow (performed by means of the earthquake prediction algorithms CN and M8S) and permits the identification and routine updating of alerted areas. At the local spatial scale (tens of km) of the seismogenic nodes identified by pattern-recognition analysis, both GNSS (Global Navigation Satellite System) and SAR (Synthetic Aperture Radar) techniques, coupled with expressly developed models for interseismic phase, allow us to retrieve the deformation style and stress evolution within the seismogenic areas. The displacement fields obtained from EO data provide the input for the geophysical modeling, which eventually permits to indicate whether a specific fault is in a “critical state.” The scenarios of expected ground motion (shakemaps) associated with the alerted areas are then defined by means of full waveforms modeling, based on the possibility to compute synthetic seismograms by the modal summation technique (neo-deterministic hazard assessment). In this way, a set of deterministic scenarios of ground motion, which refer to the time interval when a strong event is likely to occur within the alerted area, can be defined both at national and at local scale. The considered integrated approach opens new routes in understanding the dynamics of fault zones as well as in modeling the expected ground motion. The SISMA system, in fact, provides tools for establishing warning criteria based on deterministic and rigorous forward geophysical models and hence allows for a well-controlled real-time prospective testing and validation of the proposed methodology over the Italian territory. The proposed approach complements the traditional probabilistic approach for seismic hazard estimates, since it supplies routinely updated information useful in assigning priorities for timely mitigation actions and hence it is particularly relevant to Civil Defense purposes.


WIT Transactions on the Built Environment | 2013

Earthquake recurrence and seismic hazard assessment: a comparative analysis over the Italian territory

Antonella Peresan; Andrea Magrin; A. K. Nekrasova; Vladimir Kossobokov; G. F. Panza

Rigorous and objective testing of seismic hazard assessments against real seismic activity are a necessary precondition for any responsible seismic risk assessment. The reference hazard maps for the Italian seismic code, obtained with the classical probabilistic approach (PSHA) and the alternative ground shaking maps based on the neo-deterministic approach (NDSHA) are crosscompared and tested against the real seismicity for the territory of Italy. NDSHA is a methodology that allows for the sound definition of credible scenario events, based on the realistic physical modelling of ground motion from a wide set of possible earthquakes. The flexibility of NDSHA permits to account for earthquake recurrence and allows for the generation of ground motion maps at specified return periods that permits a straightforward comparison between the NDSHA and the PSHA maps.


Journal of Radioanalytical and Nuclear Chemistry | 2013

Uranium, radium and tritium groundwater monitoring at INFN-Gran Sasso National Laboratory, Italy

Wolfango Plastino; M. Laubenstein; S. Nisi; Antonella Peresan; Pavel P. Povinec; Marco Balata; F Bella; Angela Cardarelli; Marta Ciarletti; Lorenzo Copia; Massimiliano De Deo; Benedetto Gallese; Luca Ioannucci

Uranium groundwater anomalies, which were observed in cataclastic rocks crossing the underground Gran Sasso National Laboratory before the L’Aquila earthquake (April 6th, 2009), have been studied versus radium and tritium contents. The radionuclide analysis supports the role of endogenic fluid dynamics for uranium content in groundwater rather than percolation processes, due to meteoric events occurring above the water table of the Gran Sasso aquifer. The uranium anomalies represent a key geochemical signal of a progressive increase of deep fluids fluxes at middle-lower crustal levels associated with the geodynamics of the earthquake. Moreover, the uranium represents a more precise strain-meter than radon as its presence can be modulated during the preparation phase of the earthquake, and only successively released by microfracturing during the main shock and aftershocks.


Physics of the Earth and Planetary Interiors | 2002

Stability of intermediate-term earthquake predictions with respect to random errors in magnitude: the case of Central Italy

Antonella Peresan; I. Rotwain; I. Zaliapin; G. F. Panza

Abstract The influence of random magnitude errors on the results of intermediate-term earthquake predictions is analyzed in this study. The particular case of predictions performed using the algorithm CN in central Italy is considered. The magnitudes of all events reported in the original catalog (OC) are randomly perturbed within the range of the expected errors, thus generating a set of randomized catalogs. The results of predictions for the original and the randomized catalogs, performed following the standard CN rules, are then compared. The average prediction quality of the algorithm CN appear stable with respect to magnitude errors up to ±0.3 units. Such a stable prediction is assured if the threshold setting period corresponds to a time interval sufficiently long and representative of the seismic activity within the region, while if the threshold setting period is too short, the average quality of CN decreases linearly for increasing maximum error in magnitude.


Acta Geophysica | 2013

Analysis of Italian Earthquake Catalogs in the Context of Intermediate-Term Prediction Problem

L. L. Romashkova; Antonella Peresan

We perform a comparative analysis of regional and global earthquake catalogs currently available for the territory of Italy. We consider: (a) instrumental seismic catalogs provided by the Istituto Nazionale di Geofisica e Vulcanologia, Roma (INGV) for earthquake forecasting experiment in Italy within the Collaboratory for the Study of Earthquake Predictability (CSEP); (b) Global Hypocenters’ Data provided by the USGS/NEIC, which is currently used in the real-time earthquake prediction experiment by CN and M8S algorithms in Italy, and (c) seismological Bulletin provided by the International Seismological Centre (ISC). We discuss advantages and shortcomings of these catalogs in the context of intermediate-term middle-range earthquake prediction problem in Italy, including the possibility of the catalog’s combined or integrated use. Magnitude errors in the catalog can distort statistics of success-to-failure scoring and eventually falsify testing results. Therefore, the analysis of systematic and random errors in magnitude presented in Appendixes can be of significance in its own right.


Journal of Seismology | 2017

Neo-deterministic seismic hazard scenarios for India???a preventive tool for disaster mitigation

Imtiyaz A. Parvez; Andrea Magrin; Franco Vaccari; Ashish; Ramees R. Mir; Antonella Peresan; Giuliano Panza

Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489–508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93–165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489–508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.


arXiv: Geophysics | 2015

A New Probabilistic Shift Away from Seismic Hazard Reality in Italy

A. K. Nekrasova; Antonella Peresan; Volodya Kossobokov; G. F. Panza

Objective testing is a key issue in the process of revision and improvement of seismic hazard assessments. Therefore we continue the rigorous comparative analysis of past and newly available hazard maps for the territory of Italy against the seismic activity observed in reality. The final Global Seismic Hazard Assessment Program (GSHAP) results and the most recent version of Seismic Hazard Harmonization in Europe (SHARE) project maps, along with the reference hazard maps for the Italian seismic code, all obtained by probabilistic seismic hazard assessment (PSHA), are cross-compared to the three ground shaking maps based on the duly physically and mathematically rooted neo-deterministic approach (NDSHA). These eight hazard maps for Italy are tested against the available data on ground shaking. The results of comparison between predicted macroseismic intensities and those reported for past earthquakes (in the time interval 1000–2014) show that models provide rather conservative estimates, which tend to over-estimate seismic hazard at the ground shaking levels below the MCS intensity IX. Only exception is represented by the neo-deterministic maps associated with a fixed return period of 475 or 2475 years, which provide a better fit to observations, at the cost of model consistent 10 % or 2 % cases of exceedance respectively. In terms of the Kolmogorov-Smirnov goodness of fit criterion, although all of the eight hazard maps differ significantly from the distribution of the observed ground shaking reported in the available Italian databases, the NDSHA approach appears to outscore significantly the PSHA one.

Collaboration


Dive into the Antonella Peresan's collaboration.

Top Co-Authors

Avatar

Giuliano Panza

China Earthquake Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. L. Romashkova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir Kossobokov

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir Kossobokov

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge