Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis Grande is active.

Publication


Featured researches published by Alexis Grande.


Nature Medicine | 2003

Safety of retroviral gene marking with a truncated NGF receptor

Chiara Bonini; Manuel Grez; Catia Traversari; Fabio Ciceri; S. Marktel; Giuliana Ferrari; Mary C. Dinauer; Mohammed A. Sadat; Alessandro Aiuti; S. Deola; M. Radrizzani; Anton Hagenbeek; J. Apperley; S. Ebeling; A. Martens; H. J. Kolb; M. Weber; Francesco Lotti; Alexis Grande; E. Weissinger; Juan A. Bueren; M. Lamana; J. H.F. Falkenburg; M. H.M. Heemskerk; T. Austin; Steven M. Kornblau; F. Marini; C. Benati; Zulma Magnani; S. Cazzaniga

To the editor—Random integration into the host cell genome and inappropriate transgene expression are major safety concerns for the clinical use of retroviral vectors. Li et al. recently reported a leukemic transformation of mouse bone marrow cells caused by integration of a transgene-carrying retroviral vector into the Evi1 proto-oncogene. They suggested that expression of the transgene, a truncated form of the p75 low-affinity nerve growth factor receptor (∆LNGFR) with most of the intracytoplasmic tail deleted (from residue 248), contributed to the leukemic progression. Because ∆LNGFR is used as a surface marker in gene therapy clinical trials aimed at controlling graft-versus-host disease (GVHD) after bone marrow transplantation (BMT), a critical assessment of the potential risks associated with the use of such a molecule is essential. In a collaborative effort between 17 independent groups of investigators, we have accumulated both pre-clinical and clinical evidence supporting the safety of ∆LNGFR as a cell-marking molecule. Cumulative data obtained from >300 mice transplanted with bone marrow cells transduced with ∆LNGFR-expressing retroviral vectors showed normal engraftment, persistence and differentiation of ∆LNGFR-expressing hematopoietic stemprogenitor cells (HSCs) in primary, secondary and tertiary BMT recipients, with no adverse events (Table 1 and Supplementary Information online). Over 100 of these mice were monitored for >20 weeks after BMT; more than 70 animals, including 16 recipients of secondary or tertiary BMT, were monitored for >28 weeks. Considering that a total of >1 × 10 transduced cells were transplanted, and assuming an average of one retroviral integration per cell, we estimate the risk of oncogenic transformation after transduction with a ∆LNGFR-encoding retroviral vector to be <1 in 10 integration events. Therefore, expression of ∆LNGFR could not have increased the expected frequency of an insertional oncogenesis event, which has been previously estimated at 10 to 10 per insertion event. Expression of ∆LNGFR did not alter the function or survival of T lymphocytes derived from peripheral blood mononuclear cells transduced with a variety of vectors and studied in different animal models. In pre-clinical models of post-BMT GVHD, no difference in the ability to induce donor chimerism or to mediate GVHD was observed for ∆LNGFR-expressing T cells, as compared with control T cells, in 356 mice, 200 rats and 3 dogs (Table 1 and Supplementary Information online), again with no adverse events. Analysis of 102 independent transductions of human peripheral lymphocytes with two different vectors (SFCMM-3 and SFCM) encoding the same ∆LNGFR detected no change in the expression of markers of lineage, activation or adhesion, or in the proliferative capacity of T cells, as assayed by limiting dilution after polyclonal in vitro stimulation. All cells remained strictly dependent on interleukin-2 for growth and survival, and the Safety of retroviral gene marking with a truncated NGF receptor


British Journal of Haematology | 1994

Expression and functional role of c-kit ligand (SCF) in human multiple myeloma cells.

Roberto M. Lemoli; Alessandra Fortuna; Alexis Grande; Barbara Gamberi; Laura Bonsi; Miriam Fogli; Marilina Amabile; Michele Cavo; Sergio Ferrari; Sante Tura

Summary. In this study we investigated the proliferation of three well‐documented MM lines and 10 bone marrow samples from myeloma patients in response to rh‐SCF alone and combined with Interleukin‐6 (IL‐6), IL‐3 and IL‐3/GMCSF fusion protein PIXY 321. Neoplastic plasma cells were highly purified (>90%) by immunomagnetic depletion of T, myeloid. monocytoid and NK cells. The number of S‐phase cells was evaluated after 3 and 7d of liquid culture by the bromodeoxyuridine (BRDU) incorporation assay. The proliferation of RPMI 8226 and U266 cell lines was also assessed by a clonogenic assay. All the experiments were performed in serum‐free conditions. RPMI 8226 cell line was not stimulated by SCF which also did not augment the proliferative activity of IL‐6, IL‐3 and PIXY‐321. Conversely, SCF addition resulted in 2.4‐fold increase of the number of U266 colonies and in a higher number of U266 and MT3 cells in S‐phase (24.5 ± 2% SEM v 14.5 ± 1% SEM and 32 ± 3% SEM v 21 ± 4% SEM, respectively; P < 0.05). The c‐kit ligand also enhanced the proliferation of MT3 and U266 cells mediated by the other cytokines. Anti‐SCF polyclonal antibodies completely abrogated the proliferative response of MT3 cells to exogenous SCF and markedly reduced the spontaneous growth of the same cell line. Reverse transcriptase‐polymerase chain reaction amplification (RT‐PCR) did detect SCF mRNA in MT3 and RPMI 8226 cells. Moreover, secreted SCF was found, in a biologically active form, in the supernatant of the two cell lines by the M07e proliferation assay.


Cell Death & Differentiation | 2006

Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells

Claudia Gemelli; Monica Montanari; Elena Tenedini; T Zanocco Marani; Tatiana Vignudelli; M Siena; Roberta Zini; Simona Salati; Enrico Tagliafico; Rossella Manfredini; Alexis Grande; Sergio Ferrari

Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.


Journal of Leukocyte Biology | 2002

Physiological levels of 1α, 25 dihydroxyvitamin D3 induce the monocytic commitment of CD34+ hematopoietic progenitors

Alexis Grande; Monica Montanari; Enrico Tagliafico; Rossella Manfredini; Tommaso Zanocco Marani; M Siena; Elena Tenedini; Andrea Gallinelli; Sergio Ferrari

Although supraphysiological levels of 1α, 25 dihydroxyvitamin D3 (VD) have been demonstrated extensively to induce the monomacrophagic differentiation of leukemic myelo‐ and monoblasts, little is known about the role that physiological levels of this vitamin could play in the regulation of normal hematopoiesis. To clarify this issue, we adopted a liquid‐culture model in which cord blood CD34+ hematopoietic progenitors, induced to differentiate in the presence of different combinations of cytokines, were exposed to VD at various concentrations and stimulation modalities. The data obtained show that physiological levels of VD promote a differentiation of CD34+ hematopoietic progenitors characterized by the induction of all the monomacrophagic immunophenotypic and morphological markers. This effect is not only exerted at the terminal maturation but also at the commitment level, as demonstrated by the decrease of highly undifferentiated CD34+CD38− hematopoietic stem cells, the down‐regulation of CD34 antigen, and the increase of monocyte‐committed progenitors. Molecular analysis suggests that the VD genomic signaling pathway underlies the described differentiation effects.


Stem Cells | 2005

The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self‐Renewal, Commitment, and Engraftment

Rossella Manfredini; Roberta Zini; Simona Salati; M Siena; Elena Tenedini; Enrico Tagliafico; Monica Montanari; Tommaso Zanocco-Marani; Claudia Gemelli; Tatiana Vignudelli; Alexis Grande; Miriam Fogli; Lara Rossi; Maria Elena Fagioli; Lucia Catani; Roberto M. Lemoli; Sergio Ferrari

The gene expression profile of CD34− hematopoietic stem cells (HSCs) and the correlations with their biological properties are still poorly understood. To address this issue, we used the DNA microarray technology to compare the expression profiles of different peripheral blood hemopoietic stem/progenitor cell subsets, lineage‐negative (Lin−) CD34−, Lin−CD34+, and Lin+CD34+ cells. The analysis of gene categories differentially expressed shows that the expression of CD34 is associated with cell cycle entry and metabolic activation, such as DNA, RNA, and protein synthesis. Moreover, the significant upregulation in CD34− cells of pathways inhibiting HSC proliferation induces a strong differential expression of cyclins, cyclin‐dependent kinases (CDKs), CDK inhibitors, and growth‐arrest genes. According to the expression of their receptors and transducers, interleukin (IL)‐10 and IL‐17 showed an inhibitory effect on the clonogenic activity of CD34− cells. Conversely, CD34+ cells were sensitive to the mitogenic stimulus of thrombopoietin. Furthermore, CD34− cells express preferentially genes related to neural, epithelial, and muscle differentiation. The analysis of transcription factor expression shows that the CD34 induction results in the upregulation of genes related to self‐renewal and lineage commitment. The preferential expression in CD34+ cells of genes supporting the HSC mobilization and homing to the bone marrow, such as chemokine receptors and integrins, gives the molecular basis for the higher engraftment capacity of CD34+ cells. Thus, the different kinetic status of CD34− and CD34+ cells, detailed by molecular and functional analysis, significantly influences their biological behavior.


European Journal of Haematology | 2009

Expression of interleukins 1, 3, 6, stem cell factor and their receptors in acute leukemia blast cells and in normal peripheral lymphocytes and monocytes.

Sergio Ferrari; Alexis Grande; Rossella Manfredini; Enrico Tagliafico; Patrizia Zucchini; Giuseppe Torelli; Umberto Torelli

Abstract: Reverse transcriptase‐polymerase chain reaction amplification (RT‐PCR) and Southern blot analysis were used to evaluate ligand and receptor expression of interleukin 1α (IL‐1α), interleukin 3 (IL‐3), interleukin 6 (IL‐6) and stem cell factor (SCF) in peripheral blood lymphocytes and monocytes and in several acute leukemia blast cell populations. Resting peripheral lymphocytes and monocytes expressed both ligand and receptor of the four cytokines at considerable levels. The leukemic blast cells of the M1‐M4 phenotypes are characterized by almost complete lack of expression of IL‐1α, IL‐3 and IL‐6 and the constant and usually high expression of SCF. On the other hand, these myeloid blast cells express generally high levels of the four cytokine receptors. The data suggest that the regulation of the expression of IL‐1α, IL‐3 and IL‐6, at least in our limited number of leukemic cell populations studied, is independent of that of SCF. The results indicate that, at least in most of the leukemic myeloid blasts cells, the expression of SCF and its receptor, the c‐kit oncogene, may permit an autocrine regulation of cell cycling.


Leukemia | 2006

Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia

Enrico Tagliafico; Elena Tenedini; Rossella Manfredini; Alexis Grande; Francesco Ferrari; Enrica Roncaglia; Silvio Bicciato; Roberta Zini; Simona Salati; Elisa Bianchi; Claudia Gemelli; Monica Montanari; Tatiana Vignudelli; Tommaso Zanocco-Marani; Sandra Parenti; P Paolucci; G Martinelli; Pier Paolo Piccaluga; M Baccarani; Giorgina Specchia; Umberto Torelli; Sergio Ferrari

Acute myeloid leukemia (AML) blasts are immature committed myeloid cells unable to spontaneously undergo terminal maturation, and characterized by heterogeneous sensitivity to natural differentiation inducers. Here, we show a molecular signature predicting the resistance or sensitivity of six myeloid cell lines to differentiation induced in vitro with retinoic acid or vitamin D. The identified signature was further validated by TaqMan assay for the prediction of response to an in vitro differentiation assay performed on 28 freshly isolated AML blast populations. The TaqMan assay successfully predicts the in vitro resistance or responsiveness of AML blasts to differentiation inducers. Furthermore, performing a meta-analysis of publicly available microarray data sets, we also show the accuracy of our prediction on known phenotypes and suggest that our signature could become useful for the identification of patients eligible for new therapeutic strategies.


Molecular and Cellular Biology | 2009

HOXD13 Binds DNA Replication Origins To Promote Origin Licensing and Is Inhibited by Geminin

Valentina Salsi; S. Ferrari; Roberta Ferraresi; Andrea Cossarizza; Alexis Grande; Vincenzo Zappavigna

ABSTRACT HOX DNA-binding proteins control patterning during development by regulating processes such as cell aggregation and proliferation. Recently, a possible involvement of HOX proteins in replication origin activity was suggested by results showing that a number of HOX proteins interact with the DNA replication licensing regulator geminin and bind a characterized human origin of replication. The functional significance of these observations, however, remained unclear. We show that HOXD13, HOXD11, and HOXA13 bind in vivo all characterized human replication origins tested. We furthermore show that HOXD13 interacts with the CDC6 loading factor, promotes pre-replication complex (pre-RC) proteins assembly at origins, and stimulates DNA synthesis in an in vivo replication assay. HOXD13 expression in cultured cells accelerates DNA synthesis initiation in correlation with the earlier pre-RC recruitment onto origins during G1 phase. Geminin, which interacts with HOXD13 as well, blocks HOXD13-mediated assembly of pre-RC proteins and inhibits HOXD13-induced DNA replication. Our results uncover a function for Hox proteins in the regulation of replication origin activity and reveal an unforeseen role for the inhibition of HOX protein activity by geminin in the context of replication origin licensing.


Journal of Immunology | 2008

The Vitamin D3/Hox-A10 Pathway Supports MafB Function during the Monocyte Differentiation of Human CD34+ Hemopoietic Progenitors

Claudia Gemelli; Claudia Orlandi; Tommaso Zanocco Marani; Andrea Martello; Tatiana Vignudelli; Francesco Ferrari; Monica Montanari; Sandra Parenti; Anna Testa; Alexis Grande; Sergio Ferrari

Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hemopoiesis, the conclusions of such studies are quite controversial given that they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion, whereas in others they implicate this transcription factor in the induction of monocyte-macrophage differentiation. To clarify this issue, we analyzed the biological effects and the transcriptome changes determined in human primary CD34+ hemopoietic progenitors by retroviral transduction of a full-length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of the MafB gene, recently identified as the master regulator of such a maturation pathway. By using a combined approach based on computational analysis, EMSA experiments, and luciferase assays, we were able to demonstrate the presence of a Hox-A10-binding site in the promoter region of the MafB gene, which suggested the likely molecular mechanism underlying the observed effect. Stimulation of the same cells with the vitamin D3 monocyte differentiation inducer resulted in a clear increase of Hox-A10 and MafB transcripts, indicating the existence of a precise transactivation cascade involving vitamin D3 receptor, Hox-A10, and MafB transcription factors. Altogether, these data allow one to conclude that the vitamin D3/Hox-A10 pathway supports MafB function during the induction of monocyte differentiation.


Leukemia & Lymphoma | 1993

Overexpression of c-kit in a leukemic cell population carrying a trisomy 4 and its relationship with the proliferative capacity.

Sergio Ferrari; Alexis Grande; Patrizia Zucchini; Rossella Manfredini; Enrico Tagliafico; Elena Rossi; Paola Temperani; Giuseppe Torelli; Giovanni Emilia; Umberto Torelli

The expression of c-kit and its ligand, the stem cell factor (SCF), was studied in five cases of acute myeloid leukemia. One of these had a trisomy of chromosome 4, where the c-kit oncogene is located. In this case, the c-kit oncogene was overexpressed, but matched by a low expression of its ligand, SCF. The molecular evaluation of the growth rate by c-myc and the histone H3 expression indicated that the growth fraction of this cell population was very low. In one of the other leukemic cell populations studied, characterized by a low expression of c-kit and an elevated expression of the SCF, the growth fraction was also very low. Our results suggest that at least for some receptor oncogenes, the simple overexpression cannot be taken as an indication that the oncogene is involved in the deregulation of cell proliferation.

Collaboration


Dive into the Alexis Grande's collaboration.

Top Co-Authors

Avatar

Sergio Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Enrico Tagliafico

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Claudia Gemelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Rossella Manfredini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Monica Montanari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sandra Parenti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Tommaso Zanocco-Marani

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elena Tenedini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Tatiana Vignudelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

M Siena

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge