Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Gemelli is active.

Publication


Featured researches published by Claudia Gemelli.


Cell Death & Differentiation | 2006

Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells

Claudia Gemelli; Monica Montanari; Elena Tenedini; T Zanocco Marani; Tatiana Vignudelli; M Siena; Roberta Zini; Simona Salati; Enrico Tagliafico; Rossella Manfredini; Alexis Grande; Sergio Ferrari

Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.


Stem Cells | 2005

The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self‐Renewal, Commitment, and Engraftment

Rossella Manfredini; Roberta Zini; Simona Salati; M Siena; Elena Tenedini; Enrico Tagliafico; Monica Montanari; Tommaso Zanocco-Marani; Claudia Gemelli; Tatiana Vignudelli; Alexis Grande; Miriam Fogli; Lara Rossi; Maria Elena Fagioli; Lucia Catani; Roberto M. Lemoli; Sergio Ferrari

The gene expression profile of CD34− hematopoietic stem cells (HSCs) and the correlations with their biological properties are still poorly understood. To address this issue, we used the DNA microarray technology to compare the expression profiles of different peripheral blood hemopoietic stem/progenitor cell subsets, lineage‐negative (Lin−) CD34−, Lin−CD34+, and Lin+CD34+ cells. The analysis of gene categories differentially expressed shows that the expression of CD34 is associated with cell cycle entry and metabolic activation, such as DNA, RNA, and protein synthesis. Moreover, the significant upregulation in CD34− cells of pathways inhibiting HSC proliferation induces a strong differential expression of cyclins, cyclin‐dependent kinases (CDKs), CDK inhibitors, and growth‐arrest genes. According to the expression of their receptors and transducers, interleukin (IL)‐10 and IL‐17 showed an inhibitory effect on the clonogenic activity of CD34− cells. Conversely, CD34+ cells were sensitive to the mitogenic stimulus of thrombopoietin. Furthermore, CD34− cells express preferentially genes related to neural, epithelial, and muscle differentiation. The analysis of transcription factor expression shows that the CD34 induction results in the upregulation of genes related to self‐renewal and lineage commitment. The preferential expression in CD34+ cells of genes supporting the HSC mobilization and homing to the bone marrow, such as chemokine receptors and integrins, gives the molecular basis for the higher engraftment capacity of CD34+ cells. Thus, the different kinetic status of CD34− and CD34+ cells, detailed by molecular and functional analysis, significantly influences their biological behavior.


Leukemia | 2006

Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia

Enrico Tagliafico; Elena Tenedini; Rossella Manfredini; Alexis Grande; Francesco Ferrari; Enrica Roncaglia; Silvio Bicciato; Roberta Zini; Simona Salati; Elisa Bianchi; Claudia Gemelli; Monica Montanari; Tatiana Vignudelli; Tommaso Zanocco-Marani; Sandra Parenti; P Paolucci; G Martinelli; Pier Paolo Piccaluga; M Baccarani; Giorgina Specchia; Umberto Torelli; Sergio Ferrari

Acute myeloid leukemia (AML) blasts are immature committed myeloid cells unable to spontaneously undergo terminal maturation, and characterized by heterogeneous sensitivity to natural differentiation inducers. Here, we show a molecular signature predicting the resistance or sensitivity of six myeloid cell lines to differentiation induced in vitro with retinoic acid or vitamin D. The identified signature was further validated by TaqMan assay for the prediction of response to an in vitro differentiation assay performed on 28 freshly isolated AML blast populations. The TaqMan assay successfully predicts the in vitro resistance or responsiveness of AML blasts to differentiation inducers. Furthermore, performing a meta-analysis of publicly available microarray data sets, we also show the accuracy of our prediction on known phenotypes and suggest that our signature could become useful for the identification of patients eligible for new therapeutic strategies.


BMC Genomics | 2007

Genomic expression during human myelopoiesis

Francesco Ferrari; Stefania Bortoluzzi; Alessandro Coppe; Dario Basso; Silvio Bicciato; Roberta Zini; Claudia Gemelli; Gian Antonio Danieli; Sergio Ferrari

BackgroundHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization.ResultsGene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules.ConclusionThe analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.


Journal of Immunology | 2008

The Vitamin D3/Hox-A10 Pathway Supports MafB Function during the Monocyte Differentiation of Human CD34+ Hemopoietic Progenitors

Claudia Gemelli; Claudia Orlandi; Tommaso Zanocco Marani; Andrea Martello; Tatiana Vignudelli; Francesco Ferrari; Monica Montanari; Sandra Parenti; Anna Testa; Alexis Grande; Sergio Ferrari

Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hemopoiesis, the conclusions of such studies are quite controversial given that they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion, whereas in others they implicate this transcription factor in the induction of monocyte-macrophage differentiation. To clarify this issue, we analyzed the biological effects and the transcriptome changes determined in human primary CD34+ hemopoietic progenitors by retroviral transduction of a full-length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of the MafB gene, recently identified as the master regulator of such a maturation pathway. By using a combined approach based on computational analysis, EMSA experiments, and luciferase assays, we were able to demonstrate the presence of a Hox-A10-binding site in the promoter region of the MafB gene, which suggested the likely molecular mechanism underlying the observed effect. Stimulation of the same cells with the vitamin D3 monocyte differentiation inducer resulted in a clear increase of Hox-A10 and MafB transcripts, indicating the existence of a precise transactivation cascade involving vitamin D3 receptor, Hox-A10, and MafB transcription factors. Altogether, these data allow one to conclude that the vitamin D3/Hox-A10 pathway supports MafB function during the induction of monocyte differentiation.


Molecular Biology of the Cell | 2010

ZFP36L1 Negatively Regulates Erythroid Differentiation of CD34+ Hematopoietic Stem Cells by Interfering with the Stat5b Pathway

Tatiana Vignudelli; Tommaso Selmi; Andrea Martello; Sandra Parenti; Alexis Grande; Claudia Gemelli; Tommaso Zanocco-Marani; Sergio Ferrari

ZFP36L1 negatively regulates erythroid differentiation of human hematopoietic progenitors by directly binding the 3′ UTR of Stat5b mRNA, thereby triggering its degradation. This study shows that posttranscriptional regulation is involved in the control of hematopoietic differentiation.


Cell Death & Differentiation | 2005

Correlation between differentiation plasticity and mRNA expression profiling of CD34+-derived CD14- and CD14+ human normal myeloid precursors

Monica Montanari; Claudia Gemelli; Elena Tenedini; T Zanocco Marani; Tatiana Vignudelli; M Siena; Roberta Zini; Simona Salati; Giuseppe Chiossi; Enrico Tagliafico; Rossella Manfredini; Alexis Grande; Sergio Ferrari

In spite of their apparently restricted differentiation potentiality, hematopoietic precursors are plastic cells able to trans-differentiate from a maturation lineage to another. To better characterize this differentiation plasticity, we purified CD14− and CD14+ myeloid precursors generated by ‘in vitro’ culture of human CD34+ hematopoietic progenitors. Morphological analysis of the investigated cell populations indicated that, as expected, they consisted of granulocyte and monocyte precursors, respectively. Treatment with differentiation inducers revealed that CD14− cells were bipotent granulo-monocyte precursors, while CD14+ cells appeared univocally committed to a terminal macrophage maturation. Flow cytometry analysis demonstrated that the conversion of granulocyte precursors to the mono-macrophage maturation lineage occurs through a differentiation transition in which the granulocyte-related myeloperoxidase enzyme and the monocyte-specific CD14 antigen are co-expressed. Expression profiling evidenced that the observed trans-differentiation process was accompanied by a remarkable upregulation of the monocyte-related MafB transcription factor.


Cell Cycle | 2012

ZFP36 expression impairs glioblastoma cell lines viability and invasiveness by targeting multiple signal transduction pathways

Tommaso Selmi; Andrea Martello; Tatiana Vignudelli; Erika Ferrari; Alexis Grande; Claudia Gemelli; Paolo Salomoni; Sergio Ferrari; Tommaso Zanocco-Marani

RNA binding proteins belonging to the TIS11/TTP gene family regulate the stability of multiple targets. Their inactivation or deregulated expression has recently been related to cancer, and it has been suggested that they are capable of displaying tumor suppressor activities. Here we describe three new targets of ZFP36 (PIM-1, PIM-3 and XIAP) and show by different approaches that its ectopic expression is capable of impairing glioblastoma cell lines viability and invasiveness by interfering with different transduction pathways. Moreover, we provide evidence that compounds capable of inducing the expression of TIS11/TTP genes determine a comparable biological effect on the same cell contexts.


Journal of Investigative Dermatology | 2015

CD271 mediates stem cells to early progeny transition in human epidermis.

Francesca Truzzi; Annalisa Saltari; Elisabetta Palazzo; Roberta Lotti; Tiziana Petrachi; Katiuscia Dallaglio; Claudia Gemelli; Giulia Grisendi; Massimo Dominici; Carlo Pincelli; Alessandra Marconi

CD271 is the low-affinity neurotrophin (p75NTR) receptor that belongs to the tumor necrosis factor receptor superfamily. Because in human epidermis, CD271 is predominantly expressed in transit-amplifying (TA) cells, we evaluated the role of this receptor in keratinocyte differentiation and in the transition from keratinocyte stem cells (KSCs) to progeny. Calcium induced an upregulation of CD271 in subconfluent keratinocytes, which was prevented by CD271 small interfering RNA. Furthermore, CD271 overexpression provoked the switch of KSCs to TA cells, whereas silencing CD271 induced TA cells to revert to a KSC phenotype, as shown by the expression of β1-integrin and by the increased clonogenic ability. CD271(+) keratinocytes sorted from freshly isolated TA cells expressed more survivin and keratin 15 (K15) compared with CD271(-) cells and displayed a higher proliferative capacity. Early differentiation markers and K15 were more expressed in the skin equivalent generated from CD271(+) TA than from those derived from CD271(-) TA cells. By contrast, late differentiation markers were more expressed in skin equivalents from CD271(-) than in reconstructs from CD271(+) TA cells. Finally, skin equivalents originated from CD271(-) TA cells displayed a psoriatic phenotype. These results indicate that CD271 is critical for keratinocyte differentiation and regulates the transition from KSCs to TA cells.


PLOS ONE | 2014

Transcriptomic Profiling of the Development of the Inflammatory Response in Human Monocytes In Vitro

Paola Italiani; Emilia Maria Cristina Mazza; Davide Lucchesi; Ingrid Cifola; Claudia Gemelli; Alexis Grande; Cristina Battaglia; Silvio Bicciato; Diana Boraschi

Monocytes/macrophages are key players in all phases of physiological and pathological inflammation. To understanding the regulation of macrophage functional differentiation during inflammation, we designed an in vitro model that recapitulates the different phases of the reaction (recruitment, initiation, development, and resolution), based on human primary blood monocytes exposed to sequential changes in microenvironmental conditions. All reaction phases were profiled by transcriptomic microarray analysis. Distinct clusters of genes were identified that are differentially regulated through the different phases of inflammation. The gene sets defined by GSEA analysis revealed that the inflammatory phase was enriched in inflammatory pathways, while the resolution phase comprised pathways related to metabolism and gene rearrangement. By comparing gene clusters differentially expressed in monocytes vs. M1 and vs. M2 macrophages extracted from an in-house created meta-database, it was shown that cells in the model resemble M1 during the inflammatory phase and M2 during resolution. The validation of inflammatory and transcriptional factors by qPCR and ELISA confirmed the transcriptomic profiles in the different phases of inflammation. The accurate description of the development of the human inflammatory reaction provided by this in vitro kinetic model can help in identifying regulatory mechanisms in physiological conditions and during pathological derangements.

Collaboration


Dive into the Claudia Gemelli's collaboration.

Top Co-Authors

Avatar

Alexis Grande

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sergio Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Enrico Tagliafico

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Monica Montanari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Tatiana Vignudelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Tommaso Zanocco-Marani

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elena Tenedini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Rossella Manfredini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sandra Parenti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

M Siena

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge