Andrea N. Naranjo
University of Delaware
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea N. Naranjo.
Biochemistry | 2011
Erinc Sahin; Jacob L. Jordan; Michelle L. Spatara; Andrea N. Naranjo; Joseph A. Costanzo; William F. Weiss; Anne S. Robinson; Erik J. Fernandez; Christopher J. Roberts
γD crystallin is a natively monomeric eye-lens protein that is associated with hereditary juvenile cataract formation. It is an attractive model system as a multidomain Greek-key protein that aggregates through partially folded intermediates. Point mutations M69Q and S130P were used to test (1) whether the protein-design algorithm RosettaDesign would successfully predict mutants that are resistant to aggregation when combined with informatic sequence-based predictors of peptide aggregation propensity and (2) how the mutations affected relative unfolding free energies (ΔΔG(un)) and intrinsic aggregation propensity (IAP). M69Q was predicted to have ΔΔG(un) ≫ 0, without significantly affecting IAP. S130P was predicted to have ΔΔG(un) ∼ 0 but with reduced IAP. The stability, conformation, and aggregation kinetics in acidic solution were experimentally characterized and compared for the variants and wild-type (WT) protein using circular dichroism and intrinsic fluorescence spectroscopy, calorimetric and chemical unfolding, thioflavin-T binding, chromatography, static laser light scattering, and kinetic modeling. Monomer secondary and tertiary structures of both variants were indistinguishable from WT, while ΔΔG(un) > 0 for M69Q and ΔΔG(un) < 0 for S130P. Surprisingly, despite being the least conformationally stable, S130P was the most resistant to aggregation, indicating a significant decrease of its IAP compared to WT and M69Q.
Biotechnology Journal | 2012
Patrick M. McNeely; Andrea N. Naranjo; Anne S. Robinson
There are a great variety of human membrane proteins, and these currently form the largest group of targets for marketed drugs. Despite the advances in drug design, however, promiscuity between drug molecules and targets often leads to undesired signaling effects, which result in unintended side effects. In this review, one family of membrane proteins – the G protein‐coupled receptors (GPCRs) – is used as a model to review experimental techniques that may be used to examine the activity of membrane proteins. As these receptors are highly relevant to healthy human physiology and represent the largest family of drug targets, they represent an excellent model for membrane proteins in general. We also review experimental evidence that suggests there may be multiple ways to target a GPCR – and by extension, membrane proteins – to more effectively target unhealthy phenotypes while reducing the occurrence and severity of side effects.
Biochemistry | 2010
Michelle A. O'Malley; Andrea N. Naranjo; Tzvetana Lazarova; Anne S. Robinson
G protein-coupled receptors (GPCRs) constitute the largest family of integral membrane proteins present in all eukaryotic cells, yet relatively little information about their structure, folding, and stability has been published. In this work, we describe several approaches to characterizing the conformational stability of the human adenosine A(2)a receptor (hA(2)aR). Thermal denaturation and chemical denaturation were not reversible, yet clear differences in the unfolding behavior were observed upon ligand binding via circular dichroism and fluorescence spectrometry. We found that the stability of hA(2)aR was increased upon incubation with the agonist N(6)-cyclohexyladenosine or the antagonist theophylline. When extracellular disulfide bonds were reduced with a chemical reducing agent, the ligand binding activity decreased by ~40%, but reduction of these bonds did not compromise the unfolding transition observed via urea denaturation. Overall, these approaches offer a general strategy for characterizing the effect of surfactant and ligand effects on the stability of GPCRs.
Biochimica et Biophysica Acta | 2015
Andrea N. Naranjo; Amy Chevalier; Gregory D. Cousins; Esther Ayettey; Emily C. McCusker; Anne S. Robinson
G protein-coupled receptors (GPCRs) are integral membrane proteins involved in cellular signaling and constitute major drug targets. Despite their importance, the relationship between structure and function of these receptors is not well understood. In this study, the role of extracellular disulfide bonds on the trafficking and ligand-binding activity of the human A2A adenosine receptor was examined. To this end, cysteine-to-alanine mutations were conducted to replace individual and both cysteines in three disulfide bonds present in the first two extracellular loops. Although none of the disulfide bonds were essential for the formation of plasma membrane-localized active GPCR, loss of the disulfide bonds led to changes in the distribution of the receptor within the cell and changes in the ligand-binding affinity. These results indicate that in contrast to many class A GPCRs, the extracellular disulfide bonds of the A2A receptor are not essential, but can modulate the ligand-binding activity, by either changing the conformation of the extracellular loops or perturbing the interactions of the transmembrane domains.
Protein Expression and Purification | 2016
Andrea N. Naranjo; Patrick M. McNeely; John Katsaras; Anne S. Robinson
The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the proteins purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.
Methods in Enzymology | 2015
Kory M. Blocker; Zachary T. Britton; Andrea N. Naranjo; Patrick M. McNeely; Carissa L. Young; Anne S. Robinson
G protein-coupled receptors (GPCRs) are membrane proteins that mediate signaling across the cellular membrane and facilitate cellular responses to external stimuli. Due to the critical role that GPCRs play in signal transduction, therapeutics have been developed to influence GPCR function without an extensive understanding of the receptors themselves. Closing this knowledge gap is of paramount importance to improving therapeutic efficacy and specificity, where efforts to achieve this end have focused chiefly on improving our knowledge of the structure-function relationship. The purpose of this chapter is to review methods for the heterologous expression of GPCRs in Saccharomyces cerevisiae, including whole-cell assays that enable quantitation of expression, localization, and function in vivo. In addition, we describe methods for the micellular solubilization of the human adenosine A2a receptor and for reconstitution of the receptor in liposomes that have enabled its biophysical characterization.
Journal of Biomolecular Screening | 2017
Patrick M. McNeely; Andrea N. Naranjo; Kimberly Forsten-Williams; Anne S. Robinson
Ligand binding plays a fundamental role in stimulating the downstream signaling of membrane receptors. Here, ligand-binding kinetics of the full-length human adenosine A2A receptor (A2AR) reconstituted in detergent micelles were measured using a fluorescently labeled ligand via fluorescence anisotropy. Importantly, to optimize the signal-to-noise ratio, these experiments were conducted in the ligand depletion regime. In the ligand depletion regime, the assumptions used to determine analytical solutions for one-site binding models for either one or two ligands in competition are no longer valid. We therefore implemented a numerical solution approach to analyze kinetic binding data as experimental conditions approach the ligand depletion regime. By comparing the results from the numerical and the analytical solutions, we highlight the ligand-receptor ratios at which the analytical solution begins to lose predictive accuracy. Using the numerical solution approach, we determined the kinetic rate constants of the fluorescent ligand, FITC-APEC, and those for three unlabeled ligands using competitive association experiments. The association and dissociation rate constants of the unlabeled ligands determined from the competitive association experiments were then independently validated using competitive dissociation data. Based on this study, a numerical solution is recommended to determine kinetic ligand-binding parameters for experiments conducted in the ligand-depletion regime.
Production of Membrane Proteins: Strategies for Expression and Isolation | 2011
Zachary T. Britton; Carissa L. Young; Ozge Can; Patrick M. McNeely; Andrea N. Naranjo; Anne S. Robinson
Biophysical Journal | 2014
Andrea N. Naranjo; John Katsaras; Anne S. Robinson
Biophysical Journal | 2013
Andrea N. Naranjo; John Katsaras; Anne S. Robinson