Andreas Karner
Johannes Kepler University of Linz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Karner.
Nano Letters | 2015
Johannes Preiner; Andreas Horner; Andreas Karner; Nicole Ollinger; Christine Siligan; Peter Pohl; Peter Hinterdorfer
The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges.
Journal of Structural Biology | 2017
Sandra Posch; Camilo Aponte-Santamaría; Richard Schwarzl; Andreas Karner; Matthias Radtke; Frauke Gräter; Tobias Obser; Gesa König; Maria A. Brehm; Hermann J. Gruber; Roland R. Netz; Carsten Baldauf; Reinhard Schneppenheim; Robert Tampé; Peter Hinterdorfer
The von Willebrand factor (VWF) is a glycoprotein in the blood that plays a central role in hemostasis. Among other functions, VWF is responsible for platelet adhesion at sites of injury via its A1 domain. Its adjacent VWF domain A2 exposes a cleavage site under shear to degrade long VWF fibers in order to prevent thrombosis. Recently, it has been shown that VWF A1/A2 interactions inhibit the binding of platelets to VWF domain A1 in a force-dependent manner prior to A2 cleavage. However, whether and how this interaction also takes place in longer VWF fragments as well as the strength of this interaction in the light of typical elongation forces imposed by the shear flow of blood remained elusive. Here, we addressed these questions by using single molecule force spectroscopy (SMFS), Brownian dynamics (BD), and molecular dynamics (MD) simulations. Our SMFS measurements demonstrate that the A2 domain has the ability to bind not only to single A1 domains but also to VWF A1A2 fragments. SMFS experiments of a mutant [A2] domain, containing a disulfide bond which stabilizes the domain against unfolding, enhanced A1 binding. This observation suggests that the mutant adopts a more stable conformation for binding to A1. We found intermolecular A1/A2 interactions to be preferred over intramolecular A1/A2 interactions. Our data are also consistent with the existence of two cooperatively acting binding sites for A2 in the A1 domain. Our SMFS measurements revealed a slip-bond behavior for the A1/A2 interaction and their lifetimes were estimated for forces acting on VWF multimers at physiological shear rates using BD simulations. Complementary fitting of AFM rupture forces in the MD simulation range adequately reproduced the force response of the A1/A2 complex spanning a wide range of loading rates. In conclusion, we here characterized the auto-inhibitory mechanism of the intramolecular A1/A2 bond as a shear dependent safeguard of VWF, which prevents the interaction of VWF with platelets.
Angewandte Chemie | 2016
Rong Zhu; Doris Sinwel; Peter S. Hasenhuetl; Kusumika Saha; Vivek Kumar; Peng Zhang; Christian Rankl; Marion Holy; Sonja Sucic; Oliver Kudlacek; Andreas Karner; Walter Sandtner; Thomas Stockner; Hermann J. Gruber; Michael Freissmuth; Amy Hauck Newman; Harald H. Sitte; Peter Hinterdorfer
Controversy regarding the number and function of ligand binding sites in neurotransmitter/sodium symporters arose from conflicting data in crystal structures and molecular pharmacology. Here, we have designed novel tools for atomic force microscopy that directly measure the interaction forces between the serotonin transporter (SERT) and the S- and R-enantiomers of citalopram on the single molecule level. This approach is based on force spectroscopy, which allows for the extraction of dynamic information under physiological conditions thus inaccessible via X-ray crystallography. Two distinct populations of characteristic binding strengths of citalopram to SERT were revealed in Na(+)-containing buffer. In contrast, in Li(+) -containing buffer, SERT showed only low force interactions. Conversely, the vestibular mutant SERT-G402H merely displayed the high force population. These observations provide physical evidence for the existence of two binding sites in SERT when accessed in a physiological context. Competition experiments revealed that these two sites are allosterically coupled and exert reciprocal modulation.
Nature Nanotechnology | 2017
Andreas Karner; Benedikt Nimmervoll; Birgit Plochberger; Enrico Klotzsch; Andreas Horner; Denis G. Knyazev; Roland Kuttner; Klemens Winkler; Lukas Winter; Christine Siligan; Nicole Ollinger; Peter Pohl; Johannes Preiner
High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.
Virology | 2016
Xenia Wörmann; Markus Lesch; Robert-William Welke; Konstantin Okonechnikov; Mirshat Abdurishid; Christian Sieben; Andreas Geissner; Volker Brinkmann; Markus Kastner; Andreas Karner; Rong Zhu; Peter Hinterdorfer; Chakkumkal Anish; Peter H. Seeberger; Andreas Herrmann; Thomas F. Meyer; Alexander Karlas
The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA1 D130E, HA2 I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production.
Molecules | 2014
Melanie Köhler; Andreas Karner; Michael Leitner; Vesa P. Hytönen; Markku S. Kulomaa; Peter Hinterdorfer; Andreas Ebner
Avidin and avidin-like proteins are widely used in numerous techniques since the avidin-biotin interaction is known to be very robust and reliable. Within this study, we investigated this bond at the molecular level under harsh conditions ranging from very low to very high pH values. We compared avidin with streptavidin and a recently developed avidin-based mutant, chimeric avidin. To gain insights of the energy landscape of these interactions we used a single molecule approach and performed the Single Molecule Force Spectroscopy atomic force microscopy technique. There, the ligand (biotin) is covalently coupled to a sharp AFM tip via a distensible hetero-bi-functional crosslinker, whereas the receptor of interest is immobilized on the probe surface. Receptor-ligand complexes are formed and ruptured by repeatedly approaching and withdrawing the tip from the surface. Varying both pulling velocity and pH value, we could determine changes of the energy landscape of the complexes. Our results clearly demonstrate that avidin, streptavidin and chimeric avidin are stable over a wide pH range although we could identify differences at the outer pH range. Taking this into account, they can be used in a broad range of applications, like surface sensors at extreme pH values.
Data in Brief | 2016
Sandra Posch; Camilo Aponte-Santamaría; Richard Schwarzl; Andreas Karner; Matthias Radtke; Frauke Gräter; Tobias Obser; Gesa König; Maria A. Brehm; Hermann J. Gruber; Roland R. Netz; Carsten Baldauf; Reinhard Schneppenheim; Robert Tampé; Peter Hinterdorfer
We here give information for a deeper understanding of single molecule force spectroscopy (SMFS) data through the example of the blood protein von Willebrand factor (VWF). It is also shown, how fitting of rupture forces versus loading rate profiles in the molecular dynamics (MD) loading-rate range can be used to demonstrate the qualitative agreement between SMFS and MD simulations. The recently developed model by Bullerjahn, Sturm, and Kroy (BSK) was used for this demonstration. Further, Brownian dynamics (BD) simulations, which can be utilized to estimate the lifetimes of intramolecular VWF interactions under physiological shear, are described. For interpretation and discussion of the methods and data presented here, we would like to directly point the reader to the related research paper, “Mutual A domain interactions in the force sensing protein von Willebrand Factor” (Posch et al., 2016) [1].
bioRxiv | 2017
Markus Kastner; Andreas Karner; Rong Zhu; Qiang Huang; Dandan Zhang; Jianping Liu; Andreas Geissner; Anne Sadewasser; Markus Lesch; Xenia Woermann; Alexander Karlas; Peter H. Seeberger; Thorsten Wolff; Peter Hinterdorfer; Andreas Herrmann; Christian Sieben
Influenza A viruses (IAV) initiate infection via binding of the viral hemagglutinin (HA) to sialylated glycan receptors on host cells. HAs receptor specificity towards sialic acid (SA) is well studied and clearly critical for virus infection, but the contribution of the highly complex cellular plasma membrane to the cellular specificity remains elusive. In addition, some studies indicated that other host cell factors such as the epidermal growth factor receptor might contribute to the initial virus-cell contact and further downstream signaling1. Here we use two complementary methods, glycan arrays and single-virus force spectroscopy (SVFS) to compare influenza virus receptor specificity with actual host cell binding. Unexpectedly, our study reveals that HAs receptor binding preference does not necessarily reflect virus-cell specificity. We propose SVFS as a tool to elucidate the cell binding preference of IAV thereby including the complex environment of sialylated receptors within the plasma membrane of living cells.
Biophysical Journal | 2018
Birgit Plochberger; Markus Axmann; Erdinc Sezgin; Johannes Preiner; Andreas Karner; Clemens Röhrl; Michael D. Brodesser; Christian Eggeling; Gerhard J. Schütz; Herbert Stangl
Biophysical Journal | 2017
Anny Fis; Andreas Karner; Roland Kuttner; Johannes Preiner; Mirjam Zimmermann; Hermann J. Gruber; Peter Pohl; Peter Hinterdorfer