Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas P. Gondikas is active.

Publication


Featured researches published by Andreas P. Gondikas.


Environmental Science & Technology | 2012

Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans

Xinyu Yang; Andreas P. Gondikas; Stella M. Marinakos; Mélanie Auffan; Jie Liu; Heileen Hsu-Kim; Joel N. Meyer

The rapidly increasing use of silver nanoparticles (Ag NPs) in consumer products and medical applications has raised ecological and human health concerns. A key question for addressing these concerns is whether Ag NP toxicity is mechanistically unique to nanoparticulate silver, or if it is a result of the release of silver ions. Furthermore, since Ag NPs are produced in a large variety of monomer sizes and coatings, and since their physicochemical behavior depends on the media composition, it is important to understand how these variables modulate toxicity. We found that a lower ionic strength medium resulted in greater toxicity (measured as growth inhibition) of all tested Ag NPs to Caenorhabditis elegans and that both dissolved silver and coating influenced Ag NP toxicity. We found a linear correlation between Ag NP toxicity and dissolved silver, but no correlation between size and toxicity. We used three independent and complementary approaches to investigate the mechanisms of toxicity of differentially coated and sized Ag NPs: pharmacological (rescue with trolox and N-acetylcysteine), genetic (analysis of metal-sensitive and oxidative stress-sensitive mutants), and physicochemical (including analysis of dissolution of Ag NPs). Oxidative dissolution was limited in our experimental conditions (maximally 15% in 24 h) yet was key to the toxicity of most Ag NPs, highlighting a critical role for dissolved silver complexed with thiols in the toxicity of all tested Ag NPs. Some Ag NPs (typically less soluble due to size or coating) also acted via oxidative stress, an effect specific to nanoparticulate silver. However, in no case studied here was the toxicity of a Ag NP greater than would be predicted by complete dissolution of the same mass of silver as silver ions.


Environmental Science & Technology | 2012

Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation.

Andreas P. Gondikas; Amanda Morris; Brian C. Reinsch; Stella M. Marinakos; Gregory V. Lowry; Heileen Hsu-Kim

The persistence of silver nanoparticles in aquatic environments and their subsequent impact on organisms depends on key transformation processes, which include aggregation, dissolution, and surface modifications by metal-complexing ligands. Here, we studied how cysteine, an amino acid representative of thiol ligands that bind monovalent silver, can alter the surface chemistry, aggregation, and dissolution of zero-valent silver nanoparticles. We compared nanoparticles synthesized with two coatings, citrate and polyvinylpirrolidone (PVP), and prepared nanoparticle suspensions (approximately 8 μM total Ag) containing an excess of cysteine (400 μM). Within 48 h, up to 47% of the silver had dissolved, as indicated by filtration of the samples with a 0.025-μm filter. Initial dissolution rates were calculated from the increase of dissolved silver concentration when particles were exposed to cysteine and normalized to the available surface area of nanoparticles in solution. In general, the rates of dissolution were almost 3 times faster for citrate-coated nanoparticles relative to PVP-coated nanoparticles. Rates tended to be slower in solutions with higher ionic strength in which the nanoparticles were aggregating. X-ray absorption spectroscopy analysis of the particles suggested that cysteine adsorbed to silver nanoparticles surfaces through the formation of Ag(+I)--sulfhydryl bonds. Overall, the results of this study highlight the importance of modifications by sulfhydryl-containing ligands that can drastically influence the long-term reactivity of silver nanoparticles in the aquatic environment and their bioavailability to exposed organisms. Our findings demonstrate the need to consider multiple interlinked transformation processes when assessing the bioavailability, environmental risks, and safety of nanoparticles, particularly in the presence of metal-binding ligands.


Environmental Science & Technology | 2014

Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake.

Andreas P. Gondikas; Frank von der Kammer; Robert B. Reed; Stephan Wagner; James F. Ranville; Thilo Hofmann

Monitoring data are necessary for the future production of engineered nanomaterials and the development of regulations for nanomaterials. Therefore, it is necessary to develop methods that reliably detect and quantify nanomaterials in real-world systems at expectedly low concentrations. In this work we tested several methodological approaches to detect titanium dioxide nanomaterials released from sunscreen products into the Old Danube Lake (Vienna, Austria), which is heavily used for recreational activities like bathing and water sports during the summer season. During a 12-month period suspended particulate matter (SPM) was collected from the lake and analyzed using a combination of complementary techniques. By sampling at a location approximately 50 m from the nearest bathing area and at one meter depth from the water surface, we focused on the potentially mobile fraction of the released nanoparticles. We were able to identify titanium dioxide nanoparticles stemming from sunscreens in the suspended matter of the lake using electron microscopy. Bulk analysis of SPM clearly shows an increase of Ti-containing particles during the summer season. These analyses, however, are not able to distinguish sunscreen nanoparticles from natural Ti-bearing nanoparticles. Therefore, Elemental ratios of Ti with Al, V, Ga, Y, Nb, Eu, Ho, Er, Tm, Yb, and Ta as determined by ICPMS and ICPOES, in combination with single particle ICPMS analysis were applied to establish local background values. The observed mild increase of Ti elemental ratios, compared to spring background values indicates that the residence time of released nanomaterials in the water column is rather short. Overall, the advantages and disadvantages of the methods used to detect and characterize the nanomaterials are discussed.


Environmental Science & Technology | 2012

Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution

Jason M. Unrine; Benjamin P. Colman; Audrey J. Bone; Andreas P. Gondikas; Cole W. Matson

To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.


Environmental Science & Technology | 2012

Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation.

Audrey J. Bone; Benjamin P. Colman; Andreas P. Gondikas; Kim M. Newton; Katherine H. Harrold; Rose M. Cory; Jason M. Unrine; Stephen J. Klaine; Cole W. Matson; Richard T. Di Giulio

To study the effects of complex environmental media on silver nanoparticle (AgNP) toxicity, AgNPs were added to microcosms with freshwater sediments and two species of aquatic plants (Potamogeton diversifolius and Egeria densa), followed by toxicity testing with microcosm surface water. Microcosms were designed with four environmental matrices in order to determine the contribution of each environmental compartment to changes in toxicity: water only (W), water + sediment (WS), water + plants (WP), and water + plants + sediment (WPS). Silver treatments included AgNPs with two different coatings, gum arabic (GA-AgNPs) or polyvinylpyrollidone (PVP-AgNPs), as well as AgNO(3). Water samples taken from the microcosms at 24 h postdosing were used in acute toxicity tests with two standard model organisms, early life stage zebrafish (Danio rerio) and Daphnia magna. Speciation of Ag in these samples was analyzed using Ag L3-edge X-ray absorption near edge spectroscopy (XANES). Silver speciation patterns for the nanoparticle treatments varied significantly by coating type. While PVP-AgNPs were quite stable and resisted transformation across all matrices (>92.4% Ag(0)), GA-AgNP speciation patterns suggest significantly higher transformation rates, especially in treatments with plants (<69.2% and <58.8% Ag(0) in WP and WPS, respectively) and moderately increased transformation with sediments (<85.6% Ag(0)). Additionally, the presence of plants in the microcosms (with and without sediments) reduced both the concentration of Ag in the water column and toxicity for all Ag treatments. Reductions in toxicity may have been related to decreased water column concentrations as well as changes in the surface chemistry of the particles induced by organic substances released from the plants.


Journal of Colloid and Interface Science | 2010

Influence of amino acids cysteine and serine on aggregation kinetics of zinc and mercury sulfide colloids

Andreas P. Gondikas; Eileen K. Jang; Heileen Hsu-Kim

Mineral sulfide colloids and nanoparticles are important for the aquatic fate and transport of toxic metals such as zinc and mercury in anaerobic environments. The persistence of metal sulfides in the colloidal form is likely to depend on surface interactions with dissolved natural organic matter. In this work, we investigated the sorption of cysteine and serine on ZnS and HgS particles and the implications for colloidal stability. These amino acids were used as model compounds for small molecular weight natural organic acids. Cysteine was found to increase colloidal stability by adsorbing to particle surfaces and modifying the surface potential of the particles. In contrast, serine did not adsorb in appreciable amounts and as a consequence, did not appear to alter surface properties and particle attachment efficiencies. The pH of the aqueous phase was another critical component for controlling aggregation kinetics of cysteine-coated ZnS particles. Colloidal stability was promoted at pH values greater than 7 due to deprotonation of functional groups on the mineral surface and sorbed cysteine molecules. These results indicate that specific surface coordination of thiol-containing natural organic acids is important for the colloidal stability of ZnS, HgS, and other metal sulfides in water.


International Journal of Environmental Research and Public Health | 2015

Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS.

Jana Navratilova; Antonia Praetorius; Andreas P. Gondikas; Willi Fabienke; Frank von der Kammer; Thilo Hofmann

Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs) into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS) has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted.


Environmental Science & Technology | 2017

Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching

Nicole Neubauer; Lorette Scifo; Jana Navratilova; Andreas P. Gondikas; Aiga Mackevica; Daniel Borschneck; Perrine Chaurand; Vladimir Vidal; Jérôme Rose; Frank von der Kammer; Wendel Wohlleben

The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined. Standardized protocols/methods for release sampling, detection, and characterization of release rate and form were applied: Transformation of the bulk material was analyzed by Scanning Electron Microscopy (SEM), X-ray-tomography and Fourier-Transform Infrared spectroscopy (FTIR); releases were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), single-particle-ICP-MS (sp-ICP-MS), Transmission Electron Microscopy (TEM), Analytical Ultracentrifugation (AUC), and UV/Vis spectroscopy. In all scenarios, the detectable particulate releases were attributed primarily to contaminations from handling and machining of the plastics, and were not identified with the pigments, although the contamination of 4 mg/kg (Fe) was dwarfed by the intentional content of 5800 mg/kg (Fe as Fe2O3 pigment). We observed modulations (which were at least partially preventable by UV stabilizers) when comparing as-produced and aged nanocomposites, but no significant increase of releases. Release of pigments was negligible within the experimental error for all investigated scenarios, with upper limits of 10 mg/m2 or 1600 particles/mL. This is the first holistic confirmation that pigment nanomaterials remain strongly contained in a plastic that has low diffusion and high persistence such as the polyolefin High Density Polyethylene (HDPE).


Environmental Science & Technology | 2017

Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles

Vesna Micić; Doris Schmid; Nathan Bossa; Andreas P. Gondikas; Milica Velimirovic; Frank von der Kammer; Mark R. Wiesner; Thilo Hofmann

The affinity between nanoscale zerovalent iron (nano-ZVI) and mineral surfaces hinders its mobility, and hence its delivery into contaminated aquifers. We have tested the hypothesis that the attachment of poly(acrylic acid)-coated nano-ZVI (PAA-nano-ZVI) to mineral surfaces could be limited by coating such surfaces with sodium (Na) humate prior to PAA-nano-ZVI injection. Na humate was expected to form a coating over favorable sites for PAA-nano-ZVI attachment and hence reduce the affinity of PAA-nano-ZVI for the collector surfaces through electrosteric repulsion between the two interpenetrating charged polymers. Column experiments demonstrated that a low concentration (10 mg/L) Na humate solution in synthetic water significantly improved the mobility of PAA-nano-ZVI within a standard sand medium. This effect was, however, reduced in more heterogeneous natural collector media from contaminated sites, as not an adequate amount of the collector sites favorable for PAA-nano-ZVI attachment within these media appear to have been screened by the Na humate. Na humate did not interact with the surfaces of acid-washed glass beads or standard Ottawa sand, which presented less surface heterogeneity. Important factors influencing the effectiveness of Na humate application in improving PAA-nano-ZVI mobility include the solution chemistry, the Na humate concentration, and the collector properties.


Chemical Geology | 2012

Early-stage precipitation kinetics of zinc sulfide nanoclusters forming in the presence of cysteine

Andreas P. Gondikas; Armand Masion; Mélanie Auffan; Boris L. T. Lau; Heileen Hsu-Kim

Collaboration


Dive into the Andreas P. Gondikas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Navratilova

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge