Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stella M. Marinakos is active.

Publication


Featured researches published by Stella M. Marinakos.


Environmental Science & Technology | 2012

Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans

Xinyu Yang; Andreas P. Gondikas; Stella M. Marinakos; Mélanie Auffan; Jie Liu; Heileen Hsu-Kim; Joel N. Meyer

The rapidly increasing use of silver nanoparticles (Ag NPs) in consumer products and medical applications has raised ecological and human health concerns. A key question for addressing these concerns is whether Ag NP toxicity is mechanistically unique to nanoparticulate silver, or if it is a result of the release of silver ions. Furthermore, since Ag NPs are produced in a large variety of monomer sizes and coatings, and since their physicochemical behavior depends on the media composition, it is important to understand how these variables modulate toxicity. We found that a lower ionic strength medium resulted in greater toxicity (measured as growth inhibition) of all tested Ag NPs to Caenorhabditis elegans and that both dissolved silver and coating influenced Ag NP toxicity. We found a linear correlation between Ag NP toxicity and dissolved silver, but no correlation between size and toxicity. We used three independent and complementary approaches to investigate the mechanisms of toxicity of differentially coated and sized Ag NPs: pharmacological (rescue with trolox and N-acetylcysteine), genetic (analysis of metal-sensitive and oxidative stress-sensitive mutants), and physicochemical (including analysis of dissolution of Ag NPs). Oxidative dissolution was limited in our experimental conditions (maximally 15% in 24 h) yet was key to the toxicity of most Ag NPs, highlighting a critical role for dissolved silver complexed with thiols in the toxicity of all tested Ag NPs. Some Ag NPs (typically less soluble due to size or coating) also acted via oxidative stress, an effect specific to nanoparticulate silver. However, in no case studied here was the toxicity of a Ag NP greater than would be predicted by complete dissolution of the same mass of silver as silver ions.


Environmental Science & Technology | 2012

Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles

Rui Ma; Clément Levard; Stella M. Marinakos; Yingwen Cheng; Jie Liu; F. Marc Michel; Gordon E. Brown; Gregory V. Lowry

The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure as a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO(3) at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be ∼1 J/m(2), which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, a, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.


Aquatic Toxicology | 2010

Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans

Joel N. Meyer; Christopher A. Lord; Xinyu Y. Yang; Elena A. Turner; Appala Raju Badireddy; Stella M. Marinakos; Ashutosh Chilkoti; Mark R. Wiesner; Mélanie Auffan

Silver nanoparticles (AgNPs) are frequently used as antimicrobials. While the mechanism(s) by which AgNPs are toxic are unclear, their increasing use raises the concern that release into the environment could lead to environmental toxicity. We characterized the physicochemical behavior, uptake, toxicity (growth inhibition), and mechanism of toxicity of three AgNPs with different sizes and polyvinylpyrrolidone (PVP) or citrate coatings to the nematode Caenorhabditis elegans. We used wild-type (N2) C. elegans and strains expected to be sensitive to oxidative stress (nth-1, sod-2 and mev-1), genotoxins (xpa-1 and nth-1), and metals (mtl-2). Using traditional and novel analytical methods, we observed significant aggregation and extra-organismal dissolution of silver, organismal uptake and, in one case, transgenerational transfer of AgNPs. We also observed growth inhibition by all tested AgNPs at concentrations in the low mg/L levels. A metallothionein-deficient (mtl-2) strain was the only mutant tested that exhibited consistently greater AgNP sensitivity than wild-type. Although all tested AgNPs were internalized (passed cell membranes) in C. elegans, at least part of the toxicity observed was mediated by ionic silver. Finally, we describe a modified growth assay that permits differentiation between direct growth-inhibitory effects and indirect inhibition mediated by toxicity to the food source.


Analytical Chemistry | 2008

Label-free plasmonic detection of biomolecular binding by a single gold nanorod.

Greg Nusz; Stella M. Marinakos; Adam C. Curry; Andreas B. Dahlin; Fredrik Höök; and Adam Wax; Ashutosh Chilkoti

We report the use of individual gold nanorods as plasmonic transducers to detect the binding of streptavidin to individual biotin-conjugated nanorods in real time on a surface. Label-free detection at the single-nanorod level was performed by tracking the wavelength shift of the nanorod-localized surface plasmon resonant scattering spectrum using a dark-field microspectroscopy system. The lowest streptavidin concentration that was experimentally measured was 1 nM, which is a factor of 1000-fold lower than the previously reported detection limit for streptavidin binding by biotinylated single plasmonic nanostructures. We believe that the current optical setup is able to reliably measure wavelength shifts as small as 0.3 nm. Binding of streptavidin at 1 nM concentration induces a mean resonant wavelength shift of 0.59 nm suggesting that we are currently operating at close to the limit of detection of the system.


ACS Nano | 2009

Rational Selection of Gold Nanorod Geometry for Label-Free Plasmonic Biosensors

Greg Nusz; Adam C. Curry; Stella M. Marinakos; Adam Wax; Ashutosh Chilkoti

We present the development of an analytical model that can be used for the rational design of a biosensor based on shifts in the local surface plasmon resonance (LSPR) of individual gold nanoparticles. The model relates the peak wavelength of light scattered by an individual plasmonic nanoparticle to the number of bound analyte molecules and provides an analytical formulation that predicts relevant figures-of-merit of the sensor such as the molecular detection limit (MDL) and dynamic range as a function of nanoparticle geometry and detection system parameters. The model calculates LSPR shifts for individual molecules bound by a nanorod, so that the MDL is defined as the smallest number of bound molecules that is measurable by the system, and the dynamic range is defined as the maximum number of molecules that can be detected by a single nanorod. This model is useful because it will allow a priori design of an LSPR sensor with figures-of-merit that can be optimized for the target analyte. This model was used to design an LSPR sensor based on biotin-functionalized gold nanorods that offers the lowest MDL for this class of sensors. The model predicts a MDL of 18 streptavidin molecules for this sensor, which is in good agreement with experiments and estimates. Further, we discuss how the model can be utilized to guide the development of future generations of LSPR biosensors.


Environmental Science & Technology | 2012

Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation.

Andreas P. Gondikas; Amanda Morris; Brian C. Reinsch; Stella M. Marinakos; Gregory V. Lowry; Heileen Hsu-Kim

The persistence of silver nanoparticles in aquatic environments and their subsequent impact on organisms depends on key transformation processes, which include aggregation, dissolution, and surface modifications by metal-complexing ligands. Here, we studied how cysteine, an amino acid representative of thiol ligands that bind monovalent silver, can alter the surface chemistry, aggregation, and dissolution of zero-valent silver nanoparticles. We compared nanoparticles synthesized with two coatings, citrate and polyvinylpirrolidone (PVP), and prepared nanoparticle suspensions (approximately 8 μM total Ag) containing an excess of cysteine (400 μM). Within 48 h, up to 47% of the silver had dissolved, as indicated by filtration of the samples with a 0.025-μm filter. Initial dissolution rates were calculated from the increase of dissolved silver concentration when particles were exposed to cysteine and normalized to the available surface area of nanoparticles in solution. In general, the rates of dissolution were almost 3 times faster for citrate-coated nanoparticles relative to PVP-coated nanoparticles. Rates tended to be slower in solutions with higher ionic strength in which the nanoparticles were aggregating. X-ray absorption spectroscopy analysis of the particles suggested that cysteine adsorbed to silver nanoparticles surfaces through the formation of Ag(+I)--sulfhydryl bonds. Overall, the results of this study highlight the importance of modifications by sulfhydryl-containing ligands that can drastically influence the long-term reactivity of silver nanoparticles in the aquatic environment and their bioavailability to exposed organisms. Our findings demonstrate the need to consider multiple interlinked transformation processes when assessing the bioavailability, environmental risks, and safety of nanoparticles, particularly in the presence of metal-binding ligands.


Environmental Science & Technology | 2011

Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.

Jee Eun Song; Tanapon Phenrat; Stella M. Marinakos; Yao Xiao; Jie Liu; Mark R. Wiesner; Robert D. Tilton; Gregory V. Lowry

A fundamental understanding of attachment of surface-coated nanoparticles (NPs) is essential to predict the distribution and potential risks of NPs in the environment. Column deposition studies were used to examine the effect of surface-coating hydrophobicity on NP attachment to collector surfaces in mixtures with varying ratios of octadecylichlorosilane (OTS)-coated (hydrophobic) glass beads and clean silica (hydrophilic) glass beads. Silver nanoparticles (AgNPs) coated with organic coatings of varying hydrophobicity, including citrate, polyvinylpyrrolidone (PVP), and gum arabic (GA), were used. The attachment efficiencies of GA and PVP AgNPs increased by 2- and 4-fold, respectively, for OTS-coated glass beads compared to clean glass beads. Citrate AgNPs showed no substantial change in attachment efficiency for hydrophobic compared to hydrophilic surfaces. The attachment efficiency of PVP-, GA-, and citrate-coated AgNPs to hydrophobic collector surfaces correlated with the relative hydrophobicity of the coatings. The differences in the observed attachment efficiencies among AgNPs could not be explained by classical DLVO, suggesting that hydrophobic interactions between AgNPs and OTS-coated glass beads were responsible for the increase in attachment of surface-coated AgNPs with greater hydrophobicity. This study indicates that the overall attachment efficiency of AgNPs will be influenced by the hydrophobicity of the NP coating and the fraction of hydrophobic surfaces in the environment.


Aquatic Toxicology | 2012

Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials

Kevin W.H. Kwok; Mélanie Auffan; Appala Raju Badireddy; Clay M. Nelson; Mark R. Wiesner; Ashutosh Chilkoti; Jie Liu; Stella M. Marinakos; David E. Hinton

Silver nanoparticles (AgNPs) with antimicrobial properties are perhaps the most deployed engineered nanomaterials in consumer products. Almost all AgNPs are coated with organic materials to enhance their dispersion in water. Contributions of coatings to the toxicity of NPs have received little attention. Studies using AgNPs with one of three different coating materials (citrate (Cit), gum arabic (GA), and polyvinylpyrrolidone (PVP)) showed significantly different toxicity. GA AgNP proved to be the most toxic, while PVP and Cit AgNP exhibited similar and lower toxicity. However, all AgNPs were about three to ten times less toxic than AgNO(3) when their toxicities were compared on a mass-concentration basis. Evidence for NP-specific toxicity was observed with longer time for initiation of toxicity and increased incidence of resultant spinal flexure of medaka exposed to AgNPs, compared to AgNO(3). Hyperspectral imaging of 6 μm paraffin sections of fish exposed to AgNPs revealed AgNPs and their aggregates in tissues of fish. Gill distribution was ubiquitous, while small amounts were found in other organs, including the liver and brain. AgNPs were observed regularly in the gut lumen, but rarely in mural elements and mesentery. These results suggest that while ingestion was common, gills were the principal sites of AgNP uptake. In conclusion, AgNPs is a source of toxic Ag ions, while itself contribute partially to its toxicity to fish, and which interact with skin surface and were taken up via the gills.


Journal of Biomedical Optics | 2011

Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles

Kevin Seekell; Matthew J. Crow; Stella M. Marinakos; Julie H. Ostrander; Ashutosh Chilkoti; Adam Wax

This work presents simultaneous imaging and detection of three different cell receptors using three types of plasmonic nanoparticles (NPs). The size, shape, and composition-dependent scattering profiles of these NPs allow for a system of multiple distinct molecular markers using a single optical source. With this goal in mind, tags consisting of anti-epidermal growth factor receptor gold nanorods, anti-insulin-like growth factor 1-R silver nanospheres, and human epidermal growth factor receptor 2Ab gold nanospheres were developed to monitor the expression of receptors commonly overexpressed by cancer cells. These labels were chosen because they scatter strongly in distinct spectral windows. A hyperspectral darkfield microspectroscopy system was developed to record the scattering spectra of cells labeled with these molecular tags. Simultaneous monitoring of multiple tags may lead to applications such as profiling of cell line immunophenotype and investigation of receptor signaling pathways. Single, dual, and triple tag experiments were performed to analyze NP tag specificity as well as their interactions. Distinct resonance peaks were observed in these studies, showing the ability to characterize cell lines using conjugated NPs. However, interpreting shifts in these peaks due to changes in a cellular dielectric environment may be complicated by plasmon coupling between NPs bound to proximal receptors and other coupling mechanisms due to the receptors themselves.


Methods | 2012

Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis

Kevin Seekell; Hillel Price; Stella M. Marinakos; Adam Wax

Noble metal nanoparticles hold great potential as optical contrast agents due to a unique feature, known as the plasmon resonance, which produces enhanced scattering and absorption at specific frequencies. The plasmon resonance also provides a spectral tunability that is not often found in organic fluorophores or other labeling methods. The ability to functionalize these nanoparticles with antibodies has led to their development as contrast agents for molecular optical imaging. In this review article, we present methods for optimizing the spectral agility of these labels. We discuss synthesis of gold nanorods, a plasmonic nanoparticle in which the plasmonic resonance can be tuned during synthesis to provide imaging within the spectral window commonly utilized in biomedical applications. We describe recent advances in our group to functionalize gold and silver nanoparticles using distinct antibodies, including EGFR, HER-2 and IGF-1, selected for their relevance to tumor imaging. Finally, we present characterization of these nanoparticle labels to verify their spectral properties and molecular specificity.

Collaboration


Dive into the Stella M. Marinakos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory V. Lowry

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge