Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Reiserer is active.

Publication


Featured researches published by Andreas Reiserer.


Nature | 2015

Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

Bas Hensen; Hannes Bernien; A. E. Dréau; Andreas Reiserer; Norbert Kalb; Machiel Blok; J. Ruitenberg; R. F. L. Vermeulen; R. N. Schouten; Carlos Abellan; Waldimar Amaya; Valerio Pruneri; Morgan W. Mitchell; Matthew Markham; Daniel Twitchen; David Elkouss; Stephanie Wehner; T. H. Taminiau; R. Hanson

More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in ‘loopholes’. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell’s inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH–Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.


Nature | 2012

An elementary quantum network of single atoms in optical cavities

Stephan Ritter; Christian Nölleke; Carolin Hahn; Andreas Reiserer; Andreas Neuzner; Manuel Uphoff; Martin Mücke; Eden Figueroa; J. Bochmann; Gerhard Rempe

Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom–cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way—by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.


Nature | 2011

A single-atom quantum memory

Holger P. Specht; Christian Nölleke; Andreas Reiserer; Manuel Uphoff; Eden Figueroa; Stephan Ritter; Gerhard Rempe

The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.


Nature | 2014

A quantum gate between a flying optical photon and a single trapped atom

Andreas Reiserer; Norbert Kalb; Gerhard Rempe; Stephan Ritter

The steady increase in control over individual quantum systems supports the promotion of a quantum technology that could provide functionalities beyond those of any classical device. Two particularly promising applications have been explored during the past decade: photon-based quantum communication, which guarantees unbreakable encryption but which still has to be scaled to high rates over large distances, and quantum computation, which will fundamentally enhance computability if it can be scaled to a large number of quantum bits (qubits). It was realized early on that a hybrid system of light qubits and matter qubits could solve the scalability problem of each field—that of communication by use of quantum repeaters, and that of computation by use of an optical interconnect between smaller quantum processors. To this end, the development of a robust two-qubit gate that allows the linking of distant computational nodes is “a pressing challenge”. Here we demonstrate such a quantum gate between the spin state of a single trapped atom and the polarization state of an optical photon contained in a faint laser pulse. The gate mechanism presented is deterministic and robust, and is expected to be applicable to almost any matter qubit. It is based on reflection of the photonic qubit from a cavity that provides strong light–matter coupling. To demonstrate its versatility, we use the quantum gate to create atom–photon, atom–photon–photon and photon–photon entangled states from separable input states. We expect our experiment to enable various applications, including the generation of atomic and photonic cluster states and Schrödinger-cat states, deterministic photonic Bell-state measurements, scalable quantum computation and quantum communication using a redundant quantum parity code.


Reviews of Modern Physics | 2015

Cavity-based quantum networks with single atoms and optical photons

Andreas Reiserer; Gerhard Rempe

A vision has formed in recent years of the components necessary for a large-scale quantum network. Single trapped atoms can serve as the nodes of this network, with the links established by flying photons that are coupled to the atoms using optical resonators. This review describes progress towards the goal of multinode networks using the current generation of experiments, which have achieved unprecedented levels of atomic qubit control and light-matter coupling efficiencies.


Science | 2013

Nondestructive Detection of an Optical Photon

Andreas Reiserer; Stephan Ritter; Gerhard Rempe

Nondestructive Photon Detection The click of a photon detector is the usual method for detecting a photon and can be sufficiently sensitive to detect even a single photon. Such a detection process is, however, destructive—the photon is annihilated. Reiserer et al. (p. 1349, published online 14 November) describe an experimental system capable of detecting a single photon without destroying it. An atom in a cavity can be used for the nondestructive detection of optical photons. All optical detectors to date annihilate photons upon detection, thus excluding repeated measurements. Here, we demonstrate a robust photon detection scheme that does not rely on absorption. Instead, an incoming photon is reflected from an optical resonator containing a single atom prepared in a superposition of two states. The reflection toggles the superposition phase, which is then measured to trace the photon. Characterizing the device with faint laser pulses, a single-photon detection efficiency of 74% and a survival probability of 66% are achieved. The efficiency can be further increased by observing the photon repeatedly. The large single-photon nonlinearity of the experiment should enable the development of photonic quantum gates and the preparation of exotic quantum states of light.


Physical Review Letters | 2013

Efficient teleportation between remote single-atom quantum memories.

Christian Nölleke; Andreas Neuzner; Andreas Reiserer; Carolin Hahn; Gerhard Rempe; Stephan Ritter

We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.


Physical Review Letters | 2013

Ground-State Cooling of a Single Atom at the Center of an Optical Cavity

Andreas Reiserer; Christian Nölleke; Stephan Ritter; Gerhard Rempe

A single neutral atom is trapped in a three-dimensional optical lattice at the center of a high-finesse optical resonator. Using fluorescence imaging and a shiftable standing-wave trap, the atom is deterministically loaded into the maximum of the intracavity field where the atom-cavity coupling is strong. After 5 ms of Raman sideband cooling, the three-dimensional motional ground state is populated with a probability of (89±2)%. Our system is the first to simultaneously achieve quantum control over all degrees of freedom of a single atom: its position and momentum, its internal state, and its coupling to light.


Science | 2017

Entanglement distillation between solid-state quantum network nodes

Norbert Kalb; Andreas Reiserer; Peter C. Humphreys; Jacob J. W. Bakermans; Sten Kamerling; Naomi H. Nickerson; Simon C. Benjamin; Daniel Twitchen; Matthew Markham; Ronald Hanson

A distillation protocol is developed that enhances entanglement between distant nodes of a quantum network. Entangle, swap, purify, repeat The key to a successful quantum internet will be the ability to generate robust entanglement between distant quantum memories. Unavoidable interactions with the environment, however, generally result in the loss of entanglement. Kalb et al. describe an entanglement distillation protocol that could be used to enhance the purity and robustness of entanglement between quantum nodes of a primitive quantum network. Science, this issue p. 928 The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon–mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.


Physical Review Letters | 2015

Heralded Storage of a Photonic Quantum Bit in a Single Atom.

Norbert Kalb; Andreas Reiserer; Stephan Ritter; Gerhard Rempe

Combining techniques of cavity quantum electrodynamics, quantum measurement, and quantum feedback, we have realized the heralded transfer of a polarization qubit from a photon onto a single atom with 39% efficiency and 86% fidelity. The reverse process, namely, qubit transfer from the atom onto a given photon, is demonstrated with 88% fidelity and an estimated efficiency of up to 69%. In contrast to previous work based on two-photon interference, our scheme is robust against photon arrival-time jitter and achieves much higher efficiencies. Thus, it constitutes a key step toward the implementation of a long-distance quantum network.

Collaboration


Dive into the Andreas Reiserer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert Kalb

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Machiel Blok

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthew Markham

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bas Hensen

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge