Andrés de Blas
University of A Coruña
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrés de Blas.
Inorganic Chemistry | 2011
Luís M. P. Lima; Alexandre Lecointre; Jean-François Morfin; Andrés de Blas; Dimitris Visvikis; Loı̈c J. Charbonnière; Carlos Platas-Iglesias; Raphaël Tripier
The syntheses of a new cyclen-based ligand L(2) containing four N-[2-(2-hydroxyethoxy)ethyl]acetamide pendant arms and of its lanthanide(III) complexes [LnL(2)(H(2)O)]Cl(3) (Ln = La, Eu, Tb, Yb, or Lu) are reported, together with a comparison with some Ln(III) complexes of a previously reported analogue L(1) in which two opposite amide arms have been replaced by coordinating pyridyl units. The structure and dynamics of the La(III), Lu(III), and Yb(III) complexes in solution were studied by using multinuclear NMR investigations and density functional theory calculations. Luminescence lifetime measurements in H(2)O and D(2)O solutions of the [Ln(L(2))(H(2)O)](3+) complexes (Ln = Eu or Tb) were used to investigate the number of H(2)O molecules coordinated to the metal ion, pointing to the presence of an inner-sphere H(2)O molecule in a buffered aqueous solution. Fluoride binding to the latter complexes was investigated using a combination of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy, pointing to a surprisingly weak interaction in the case of L(2) (log K = 1.4 ± 0.1). In contrast to the results in solution, the X-ray crystal structure of the lanthanide complex showed the ninth coordination position occupied by a chloride anion. In the case of L(1), the X-ray structure of the [(EuL(1))(2)F] complex features a bridging fluoride donor with an uncommon linear Eu-F-Eu entity connecting two almost identical [Eu(L(1))](3+) units. Encapsulation of the F(-) anion within the two complexes is assisted by π-π stacking between the pyridyl rings of two complexes and C-H···F hydrogen-bonding interactions involving the anion and the pyridyl units.
Inorganic Chemistry | 2011
Martín Regueiro-Figueroa; Bachir Bensenane; Erika Ruscsák; David Esteban-Gómez; Loïc J. Charbonnière; Gyula Tircsó; Imre Tóth; Andrés de Blas; Teresa Rodríguez-Blas; Carlos Platas-Iglesias
In this contribution we present two ligands based on a do3a platform containing a picolinate group attached to the fourth nitrogen atom of the cyclen unit, which are designed for stable lanthanide complexation in aqueous solutions. Potentiometric measurements reveal that the thermodynamic stability of the complexes is very high (log K = 21.2-23.5), being comparable to that of the dota analogues. Luminescence lifetime measurements performed on solutions of the Eu(III) and Tb(III) complexes indicate that the complexes are nine coordinate with no inner-sphere water molecules. A combination of density functional theory (DFT) calculations and NMR measurements shows that for the complexes of the heaviest lanthanides there is a major isomer in solution consisting of the enantiomeric pair Λ(δδδδ) and Δ(λλλλ), which provides square antiprismatic coordination (SAP) around the metal ion. Analysis of the Yb(III)-induced paramagnetic shifts unambiguously confirms that these complexes have SAP coordination in aqueous solution. For the light lanthanide ions however both the SAP and twisted-square antiprismatic (TSAP) isomers are present in solution. Inversion of the cyclen ring appears to be the rate-determining step for the Λ(δδδδ) ↔ Δ(λλλλ) enantiomerization process observed in the Lu(III) complexes. The energy barriers obtained from NMR measurements for this dynamic process are in excellent agreement with those predicted by DFT calculations. The energy barriers calculated for the arm-rotation process are considerably lower than those obtained for the ring-inversion path. Kinetic studies show that replacement of an acetate arm of dota by a picolinate pendant results in a 3-fold increase in the formation rate of the corresponding Eu(III) complexes and a significant increase of the rates of acid-catalyzed dissociation of the complexes. However, these rates are 1-2 orders of magnitude lower than those of do3a analogues, which shows that the complexes reported herein are remarkably inert with respect to metal ion dissociation.
ChemPhysChem | 2012
David Esteban-Gómez; Andrés de Blas; Teresa Rodríguez-Blas; Lothar Helm; Carlos Platas-Iglesias
Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero.
Inorganic Chemistry | 2009
Zoltán Pálinkás; Adrián Roca-Sabio; Marta Mato-Iglesias; David Esteban-Gómez; Carlos Platas-Iglesias; Andrés de Blas; Teresa Rodríguez-Blas; Éva Tóth
The picolinate-derivative ligand based on the 1,7-diaza-12-crown-4 platform (bp12c4(2-)) forms stable Ln(3+) complexes with stability constants increasing from the early to the middle lanthanides, then being relatively constant for the rest of the series (logK(LnL) = 16.81(0.06), 18.82(0.01), and 18.08(0.05) for Ln = La, Gd, and Yb, respectively). The complex formation is fast, allowing for direct potentiometric titrations to assess the stability constants. In the presence of Zn(2+), the dissociation of [Gd(bp12c4)](+) proceeds both via proton- and metal-assisted pathways, and in this respect, this system is intermediate between DTPA-type and macrocyclic, DOTA-type chelates, for which the dissociation is predominated by metal- or proton-assisted pathways, respectively. The Cu(2+) exchange shows an unexpected pH dependency, with the observed rate constants decreasing with increasing proton concentration. The rate of water exchange, assessed by (17)O NMR, is extremely high on the [Gd(bp12c4)(H(2)O)(q)](+) complex (k(ex)(298) = (2.20 +/- 0.15) x 10(8) s(-1)), and is in the same order of magnitude as for the Gd(3+) aqua ion (k(ex)(298) = 8.0 x 10(8) s(-1)). In aqueous solution, the [Gd(bp12c4)(H(2)O)(q)](+) complex is present in hydration equilibrium between nine-coordinate, monohydrated, and ten-coordinate, bishydrated species. We attribute the fast exchange to the hydration equilibrium and to the flexible nature of the inner coordination sphere. The large negative value of the activation entropy (DeltaS = -35 +/- 8 J mol(-1) K(-1)) points to an associative character for the water exchange and suggests that water exchange on the nine-coordinate, monohydrated species is predominant in the overall exchange. Relaxometric and luminescence measurements on the Gd(3+) and Eu(3+) analogues, respectively, indicate strong binding of endogenous anions such as citrate, hydrogencarbonate, or phosphate to [Ln(bp12c4)](+) complexes (K(aff) = 280 +/- 20 M(-1), 630 +/- 50 M(-1), and 250 +/- 20 M(-1), respectively). In the ternary complexes, the inner sphere water molecules are fully replaced by the corresponding anion. Anion binding is favored by the positive charge of the [Ln(bp12c4)](+) complexes and the adjacent position of the two inner sphere water molecules. To obtain information about the structure of the ternary complexes, the [Gd(bp12c4)(HCO(3))] and [Gd(bp12c4)(H(2)PO(4))] systems were investigated by means of density functional theory calculations (B3LYP model). They show that anion coordination provokes an important lengthening of the distances between the donor atoms and the lanthanide ion. The coordination of phosphate induces a more important distortion of the metal coordination environment than the coordination of hydrogencarbonate, in accordance with a higher binding constant for HCO(3)(-) and a more important steric demand of phosphate.
Inorganic Chemistry | 2012
Aurora Rodríguez-Rodríguez; David Esteban-Gómez; Andrés de Blas; Teresa Rodríguez-Blas; Marianna Fekete; Mauro Botta; Raphaël Tripier; Carlos Platas-Iglesias
Two new macrocyclic ligands, 6,6′-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(–1).
European Journal of Inorganic Chemistry | 2000
Manuel Vicente; Carlos Lodeiro; Harry Adams; Rufina Bastida; Andrés de Blas; David E. Fenton; Alejandro Macías; Adolfo Rodríguez; Teresa Rodríguez-Blas
New series of macrocyclic Schiff-base lanthanide(III), yttrium(III), and cadmium(II) complexes, [M(1)]Xn (X = NO, M = Y, Ln = La–Yb except Pm and Dy; X = ClO, M = Cd, La, Ce, Pr, Sm, Gd, or Er) and [M(3)]Xn (X = NO, M = Dy; X = ClO, M = Er and Cd), have been prepared by cyclocondensation of O1,O7-bis(2-formylphenyl)-1,4,7-trioxaheptane with O1,O7-bis(2-aninyl)-1,4,7-trioxaheptane (1) or tris(2-aminoethyl)amine (3) in the presence of the appropriate metal salt as a template agent. The Schiff-base macrocycles 1 and 3 are also formed in the absence of a metal ion. Treatment of 1 with NaBH4 in methanol gives the diamine macrocycle 2. The reactions of LnIII, CdII, and YIII ions with 2 have also been investigated. The crystal structures of the monoprotonated ligand 2 and of the complex [Cd(3)](ClO4)2 have been determined by X-ray diffraction analysis.
Inorganic Chemistry | 2010
Mihály Purgel; Zsolt Baranyai; Andrés de Blas; Teresa Rodríguez-Blas; István Bányai; Carlos Platas-Iglesias; Imre Tóth
The conformational properties of lanthanide(III) complexes with the mono- and biphosphonate analogues of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) are investigated by means of density functional theory (DFT) calculations and NMR spectroscopy. Geometry optimizations performed at the B3LYP/6-31G(d) level and using a 46 + 4f(n) effective core potential for lanthanides provide two energy minima corresponding to the square-antiprismatic (SAP) and twisted square-antiprismatic (TSAP) geometries. Our calculations give relative free energies between the SAP and TSAP isomers in fairly good agreement with the experimental values. The SAP isomer presents the highest binding energy of the ligand to the metal ion, which further increases with respect to that of the TSAP isomer across the lanthanide series as the charge density of the metal ion increases. The stabilization of the TSAP isomer upon substitution of the acetate arms of DOTA by methylenephosphonate ones is attributed to the higher steric demand of the phosphonate groups and the higher strain of the ligand in the SAP isomer. A (1)H NMR band-shape analysis performed on the [Ln(DO2A2P)](3-) (Ln = La and Lu) complexes provided the activation parameters for enantiomerization of the TSAP form of the complexes. The TSAP isomerization process was also investigated by using DFT calculations on the [Lu(DOTA)](-) and [Ln(DO2A2P)](3-) (Ln = La and Lu) systems. Our results confirm that enantiomerization requires both rotation of the pendant arms and inversion of the four five-membered chelate rings formed upon coordination of the macrocyclic unit. According to our calculations, the arm rotation pathway in [Lu(DOTA)](-) is a one-step process involving the simultaneous rotation of the four acetate arms, while in the DO2A2P analogue, the arm-rotation process is a multistep path involving the stepwise rotation of each of the four pendant arms. The calculated activation free energies are in reasonably good agreement with the experimental data. A comparison of the experimental (13)C NMR shifts of [Ln(DO2A2P)](3-) (Ln = La and Lu) complexes and those calculated by using the GIAO method confirms that the major isomer observed in solution for these complexes corresponds to the TSAP isomer.
Polyhedron | 1992
Elena Labisbal; Andrés de Blas; José A. García-Vázquez; Jaime Romero; María L. Durán; Antonio Sousa; Neil A. Bailey; David E. Fenton; Philip B. Leeson; R.V. Parish
Abstract The electrochemical oxidation of anodic tin in acetonitrile solutions in the Schiff bases derived from the required salicylaldehyde and bis-(2-aminophenyl)disulphide (L 2 H 2 ) yields compounds of formulation SnL 2 . The crystal structure of bis{2-(2-mercaptophenyl) imino-4,6-dimethoxy-phenoxy}tin(IV) [SnL 1 2 ] have been determined. The tin atom has an octahedral coordination geometry with a meridional ligand occupancy; the average SnN, SnO and SnS bond lengths are 2.17, 2.07 and 2.47 A, respectively.
Inorganic Chemistry | 2002
David Esteban; Fernando Avecilla; Carlos Platas-Iglesias; José Mahía; Andrés de Blas; Teresa Rodríguez-Blas
Pages 5883, 5884, 5886, 5888. Several reference numbers in the text are incorrect. Page 5883: The reference number 14 should be 20; 15 and 16 near the bottom of the left-hand column should be 21 and 22; 21 should be 27. Page 5884: The 28 should be 34; 29 should be 35. Page 5886: The 31 should be 37. Page 5888: The 33 should be 39. The version with corrected reference numbers is available electronically.
Dalton Transactions | 2006
Marta Mato-Iglesias; Edina Balogh; Carlos Platas-Iglesias; Éva Tóth; Andrés de Blas; Teresa Rodríguez Blas
We report an experimental and theoretical study of the stability and solution structure of lanthanide complexes with two novel ligands containing pyridine units and phosphonate pendant arms on either ethane-1,2-diamine (L2) or cyclohexane-1,2-diamine (L3) backbones. Potentiometric studies have been carried out to determine the protonation constants of the ligands and the stability constants of the complexes with Gd(III) and the endogenous metal ions Zn(II) and Cu(II). While the stability constant of the GdL2 complex is too high to be determined by direct pH-potentiometric titrations, the cyclohexyl derivative GdL3 has a lower and assessable stability (log K(GdL3)=17.62). Due to the presence of the phosphonate groups, various protonated species can be detected up to pH approximately 8 for both ligands and all metal ions studied. The molecular clusters [Ln(L)(H2O)](3-).19H2O (Ln=La, Nd, Ho or Lu; L=L2 or L3) were characterized by theoretical calculations at the HF level. Our calculations provide two minimum energy geometries where the ligand adopts different conformations: twist-wrap (tw), in which the ligand wraps around the metal ion by twisting the pyridyl units relative to each other, and twist-fold (tf), where the slight twisting of the pyridyl units is accompanied by an overall folding of the two pyridine units towards one of the phosphonate groups. The relative free energies of the tw and tf conformations of [Ln(L)(H2O)]3- (L=L2, L3) complexes calculated in aqueous solution (C-PCM) by using the B3LYP model indicate that the tw form is the most stable one along the whole lanthanide series for the complexes of L3, while for those of L2 only the Gd(III) complex is more stable in the tf conformation by ca. 0.5 kcal mol-1. 1H NMR studies of the Eu(III) complex of L3 show the initial formation of the tf complex in aqueous solution, which slowly converts to the thermodynamically stable tw form. The structures calculated for the Nd(III) complexes are in reasonably good agreement with the experimental solution structures, as demonstrated by Nd(III)-induced relaxation rate enhancement effects in the 1H NMR spectra.