Andrés G. Algarra
University of Cádiz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrés G. Algarra.
Journal of the American Chemical Society | 2013
Rebecca C. Poulten; Michael J. Page; Andrés G. Algarra; Jennifer J. Le Roy; Isidoro López; Emma Carter; Antoni Llobet; Stuart A. Macgregor; Mary F. Mahon; Damien Martin Murphy; Muralee Murugesu; Michael K. Whittlesey
The two-coordinate cationic Ni(I) bis-N-heterocyclic carbene complex [Ni(6-Mes)2]Br (1) [6-Mes =1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene] has been structurally characterized and displays a highly linear geometry with a C-Ni-C angle of 179.27(13)°. Density functional theory calculations revealed that the five occupied metal-based orbitals are split in an approximate 2:1:2 pattern. Significant magnetic anisotropy results from this orbital degeneracy, leading to single-ion magnet (SIM) behavior.
Science | 2012
Sebastian D. Pike; Amber L. Thompson; Andrés G. Algarra; David C. Apperley; Stuart A. Macgregor; Andrew S. Weller
Solid View of a Sigma Complex For decades, it has been clear from kinetic studies that saturated hydrocarbons can also act as weak ligands, often just prior to bond cleavage reactions. These short-lived intermediates—termed “σ complexes” because the donated electrons reside in single (sigma symmetry) C-H bonds—have been glimpsed spectroscopically but have largely eluded full structural characterization. Pike et al. (p. 1648, published online 23 August) now present the crystallographic characterization of an alkane bound to rhodium, which they captured by direct hydrogenation of a more stable crystalline precursor incorporating an alkene. Hydrogenation of a crystalline precursor enables structural characterization of a commonly evoked reaction intermediate. Transition metal–alkane complexes—termed σ-complexes because the alkane donates electron density to the metal from a σ-symmetry carbon–hydrogen (C–H) orbital—are key intermediates in catalytic C–H activation processes, yet these complexes remain tantalizingly elusive to characterization in the solid state by single-crystal x-ray diffraction techniques. Here, we report an approach to the synthesis and characterization of transition metal–alkane complexes in the solid state by a simple gas-solid reaction to produce an alkane σ-complex directly. This strategy enables the structural determination, by x-ray diffraction, of an alkane (norbornane) σ-bound to a d8–rhodium(I) metal center, in which the chelating alkane ligand is coordinated to the pseudosquare planar metal center through two σ-C–H bonds.
Chemistry: A European Journal | 2013
Michael J. Page; Wei Ye Lu; Rebecca C. Poulten; Emma Carter; Andrés G. Algarra; Benson M. Kariuki; Stuart A. Macgregor; Mary F. Mahon; Kingsley J. Cavell; Damien Martin Murphy; Michael K. Whittlesey
Comproportionation of [Ni(cod)(2)] (cod = cyclooctadiene) and [Ni(PPh(3))(2)X(2)] (X = Br, Cl) in the presence of six-, seven- and eight-membered ring N-aryl-substituted heterocyclic carbenes (NHCs) provides a route to a series of isostructural three-coordinate Ni(I) complexes [Ni(NHC)(PPh(3))X] (X = Br, Cl; NHC = 6-Mes 1, 6-Anis 2, 6-AnisMes 3, 7-o-Tol 4, 8-Mes 5, 8-o-Tol 6, O-8-o-Tol 7). Continuous wave (CW) and pulsed EPR measurements on 1, 4, 5, 6 and 7 reveal that the spin Hamiltonian parameters are particularly sensitive to changes in NHC ring size, N substituents and halide. In combination with DFT calculations, a mixed SOMO of ∣3d z 2〉 and ∣3d x 2-y 2〉 character, which was found to be dependent on the complex geometry, was observed and this was compared to the experimental g values obtained from the EPR spectra. A pronounced (31)P superhyperfine coupling to the PPh(3) group was also identified, consistent with the large spin density on the phosphorus, along with partially resolved bromine couplings. The use of 1, 4, 5 and 6 as pre-catalysts for the Kumada coupling of aryl chlorides and fluorides with ArMgY (Ar = Ph, Mes) showed the highest activity for the smaller ring systems and/or smaller substituents (i.e., 1>4≈6≫5).
Journal of Organic Chemistry | 2014
Andrés G. Algarra; Warren B. Cross; David L. Davies; Qudsia Khamker; Stuart A. Macgregor; Claire L. McMullin; Kuldip Singh
Detailed experimental and computational studies are reported on the mechanism of the coupling of alkynes with 3-arylpyrazoles at [Rh(MeCN)3Cp*][PF6]2 and [RuCl2(p-cymene)]2 catalysts. Density functional theory (DFT) calculations indicate a mechanism involving sequential N-H and C-H bond activation, HOAc/alkyne exchange, migratory insertion, and C-N reductive coupling. For rhodium, C-H bond activation is a two-step process comprising κ(2)-κ(1) displacement of acetate to give an agostic intermediate which then undergoes C-H bond cleavage via proton transfer to acetate. For the reaction of 3-phenyl-5-methylpyrazole with 4-octyne k(H)/k(D) = 2.7 ± 0.5 indicating that C-H bond cleavage is rate limiting in this case. However, H/D exchange studies, both with and without added alkyne, suggest that the migratory insertion transition state is close in energy to that for C-H bond cleavage. In order to model this result correctly, the DFT calculations must employ the full experimental system and include a treatment of dispersion effects. A significantly higher overall barrier to catalysis is computed at {Ru(p-cymene)} for which the rate-limiting process remains C-H activation. However, this is now a one-step process corresponding to the κ(2)-κ(1) displacement of acetate and so is still consistent with the lack of a significant experimental isotope effect (k(H)/k(D) = 1.1 ± 0.2).
Inorganic Chemistry | 2010
Andrés G. Algarra; Manuel G. Basallote; M. Jesús Fernández-Trujillo; Marta Feliz; Eva Guillamón; Rosa Llusar; Iván Sorribes; Cristian Vicent
The molybdenum(IV) cluster hydrides of formula [Mo(3)S(4)H(3)(diphosphine)(3)](+) with diphosphine = 1,2-(bis)dimethylphosphinoethane (dmpe) or (+)-1,2-bis-(2R,5R)-2,5-(dimethylphospholan-1-yl)ethane ((R,R)-Me-BPE) have been isolated in moderate to high yields by reacting their halide precursors with borohydride. Complex [Mo(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) as well as its tungsten analogue are obtained in optically pure forms. Reaction of the incomplete cuboidal [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) complex with acids in CH(2)Cl(2) solution shows kinetic features similar to those observed for the related incomplete cuboidal [W(3)S(4)H(3)(dmpe)(3)](+) cluster. However, there is a decrease in the value of the rate constants that is explained as a result of the higher steric effect of the diphosphine. The rate constants for the reaction of both clusters [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) with HCl have similar values, thus indicating a negligible effect of the metal center on the kinetics of reaction of the hydrides coordinated to any of both transition metals.
Inorganic Chemistry | 2009
Andrés G. Algarra; Maxim N. Sokolov; Javier González-Platas; María J. Fernández-Trujillo; Manuel G. Basallote; Rita Hernandez-Molina
The reaction of Pd(dba)(2) (dba = dibenzylideneacetone) with [W(3)Se(4)(H(2)O)(9)](4+) in 2 M HCl gives the cuboidal cluster [W(3)(PdCl)Se(4)(H(2)O)(9)](3+), which undergoes edge-to-edge condensation and crystallizes from Hpts solutions as edge-linked double-cubane cluster [{W(3)PdSe(4)(H(2)O)(9)}(2)](pts)(8) x 18 H(2)O (pts(-) = p-toluenesulfonate). The substitution of Cl(-) by different ligands, including phenylsulfinate PhSO(2)(-), was explored. The phenylsulfinate complex was crystallized as a 2:1 adduct with cucurbit[6]uril (C(36)H(36)N(24)O(12)), [W(3)(Pd(PhSO(2))Se(4)(H(2)O)(8.58)Cl(0.42)](2)(C(36)H(36)N(24)O(12))Cl(5.16) x 16.83 H(2)O, and its structure was determined by X-ray diffraction. Solution studies indicate that the Pd atom is able to stabilize the pyramidal tautomer of hypophosphorous and phosphorous acid: HP(OH)(2) and P(OH)(3). Kinetic studies were carried out on the reactions with H(3)PO(2) and thiocyanate, which were found to proceed in two and three kinetically resolvable steps, respectively. The kinetic results are discussed in terms of the mechanistic proposals put forward in the literature for related complexes. To gain insight into the details of the substitution kinetics in these kinds of clusters, the reaction of the related [W(3)S(4)(H(2)O)(9)](4+) complex with NCS(-) has been reexamined, and the results obtained provide for the first time information about the rates of substitution of the whole set of nine-coordinated water molecules.
Chemistry: A European Journal | 2015
Andrés G. Algarra; David L. Davies; Qudsia Khamker; Stuart A. Macgregor; Claire L. McMullin; Kuldip Singh; Barbara Villa-Marcos
Detailed experimental and computational studies have been carried out on the oxidative coupling of the alkenes C2H3Y (Y=CO2Me (a), Ph (b), C(O)Me (c)) with 3-aryl-5-R-pyrazoles (R=Me (1 a), Ph (1 b), CF3 (1 c)) using a [Rh(MeCN)3Cp*][PF6]2/Cu(OAc)2⋅H2O catalyst system. In the reaction of methyl acrylate with 1 a, up to five products (2 aa–6 aa) were formed, including the trans monovinyl product, either complexed within a novel CuI dimer (2 aa) or as the free species (3 aa), and a divinyl species (6 aa); both 3 aa and 6 aa underwent cyclisation by an aza-Michael reaction to give fused heterocycles 4 aa and 5 aa, respectively. With styrene, only trans mono- and divinylation products were observed, whereas with methyl vinyl ketone, a stronger Michael acceptor, only cyclised oxidative coupling products were formed. Density functional theory calculations were performed to characterise the different migratory insertion and β-H transfer steps implicated in the reactions of 1 a with methyl acrylate and styrene. The calculations showed a clear kinetic preference for 2,1-insertion and the formation of trans vinyl products, consistent with the experimental results.
Inorganic Chemistry | 2010
Salvador Blasco; Begoña Verdejo; M. Paz Clares; Carmen E. Castillo; Andrés G. Algarra; Julio Latorre; M. Angeles Máñez; Manuel G. Basallote; Conxa Soriano; Enrique García-España
The synthesis of two new ligands constituted of a tris(2-aminoethyl)amine moiety linked to the 2,6 positions of a pyridine spacer through methylene groups in which the hanging arm is further functionalized with a 2-pycolyl (L1) or 3-pycolyl (L2) group is presented. The protonation of L1 and L2 and formation of Cu(2+) complexes have been studied using potentiometric, NMR, X-ray, and kinetic experiments. The results provide new information about the relevance of molecular movements in the chemistry of this kind of so-called scorpiand ligand. The comparison between these two ligands that only differ in the position of the substituent at the arm reveals important differences in both thermodynamic and kinetic properties. The Cu(2+) complex with L1 is several orders of magnitude more stable than that with L2, surely because in the latter case the pyridine nitrogen at the pendant arm is unable to coordinate to the metal ion with the ligand acting as hexadentate, a possibility that occurs in the case of [CuL1](2+), as demonstrated by its crystal structure. Significant differences are also found between both ligands in the kinetic studies of complex formation and decomposition. For L1, those processes occur in a single kinetic step, whereas for L2 they occur with the formation of a detectable reaction intermediate whose structure corresponds to that resulting from the movement typical of scorpiands. Another interesting conclusion derived from kinetic studies on complex formation is that the reactive form of the ligand is H(3)L(3+) for L1 and H(2)L(2+) for L2. DFT calculations are also reported, and they allow a rationalization of the kinetic results relative to the reactive forms of the ligands in the process of complex formation. In addition, they provide a full picture of the mechanistic pathway leading to the formation of the first Cu-N bond, including outer-sphere complexation, water dissociation, and reorganization of the outer-sphere complex.
Chemistry: A European Journal | 2012
Andrés G. Algarra; M. Jesús Fernández-Trujillo; Manuel G. Basallote
For many years it has been known that the nine water molecules in [M(3)Q(4)(H(2)O)(9)](4+) cuboidal clusters (M = Mo, W; Q = S, Se) can be replaced by entering ligands, such as chloride or thiocyanate, and kinetic studies carried out mainly on the substitution of the first water molecule at each metal centre reveal that the reaction at the three metal centres occurs with statistical kinetics; that is, a single exponential with a rate constant corresponding to the reaction at the third centre is observed instead of the expected three-exponential kinetic trace. Such simplification of the kinetic equations requires the simultaneous fulfilment of two conditions: first that the three consecutive rate constants are in statistical ratio, and second that the metal centres behave as independent chromophores. The validity of those simplifications has been checked for the case of the reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Cl(-) by using DFT and TD-DFT theoretical calculations. The results of those calculations are in agreement with the available experimental information, which indicates that the H(2)O ligands trans to the μ-S undergo substitution much faster than those trans to the μ(3)-S. Moreover, the energy barriers for the substitution of the first water molecule at the three metal centres are close to each other, the differences being compatible with the small changes in the numerical values of the rate constants required for observation of statistical kinetics. TD-DFT calculations lead to calculated electronic spectra, which are in reasonable agreement with those experimentally measured, but the calculations do not indicate that the three metal centres behave as independent chromophores, although the mathematical conditions required for simplification of the kinetic traces to a single exponential are reasonably well fulfilled at certain wavelengths. A re-examination of the kinetics of the reaction by using global fitting procedures yields results, which are compatible with statistical kinetics, although an alternative interpretation in which substitution only occurs at a single metal centre under reversible conditions is also possible.
Inorganic Chemistry | 2009
Andrés G. Algarra; Manuel G. Basallote; Carmen E. Castillo; Clares Mp; Armando Ferrer; Enrique García-España; José M. Llinares; Máñez Ma; Conxa Soriano
A ligand (L1) (bis(aminoethyl)[2-(4-quinolylmethyl)aminoethyl]amine) containing a 4-quinolylmethyl group attached to one of the terminal amino groups of tris(2-aminoethyl)amine (tren) has been prepared, and its protonation constants and stability constants for the formation of Cu(2+) complexes have been determined. Kinetic studies on the formation of Cu(2+) complexes in slightly acidic solutions and on the acid-promoted complex decomposition strongly suggest that the Cu(2+)-L1 complex exists in solution as a mixture of two species, one of them showing a trigonal bipyramidal (tbp) coordination environment with an absorption maximum at 890 nm in the electronic spectrum, and the other one being square pyramidal (sp) with a maximum at 660 nm. In acidic solution only a species with tbp geometry is formed, whereas in neutral and basic solutions a mixture of species with tbp and sp geometries is formed. The results of density functional theory (DFT) calculations indicate that these results can be rationalized by invoking the existence of an equilibrium of hydrolysis of the Cu-N bond with the amino group supporting the quinoline ring so that CuL1(2+) would be actually a mixture of tbp [CuL1(H(2)O)](2+) and sp [CuL1(H(2)O)(2)](2+). As there are many Cu(2+)-polyamine complexes with electronic spectra that show two overlapping bands at wavelengths close to those observed for the Cu(2+)-L1 complex, the existence of this kind of equilibrium between species with two different geometries can be quite common in the chemistry of these compounds. A correlation found between the position of the absorption maximum and the tau parameter measuring the distortion from the idealized tbp and sp geometries can be used to estimate the actual geometry in solution of this kind of complex.