Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew B. Pun is active.

Publication


Featured researches published by Andrew B. Pun.


Journal of the American Chemical Society | 2015

Quantitative Intramolecular Singlet Fission in Bipentacenes

Samuel N. Sanders; Elango Kumarasamy; Andrew B. Pun; M. Tuan Trinh; Bonnie Choi; Jianlong Xia; Elliot J. Taffet; Jonathan Z. Low; John R. Miller; Xavier Roy; X.-Y. Zhu; Michael L. Steigerwald; Luis M. Campos

Singlet fission (SF) has the potential to significantly enhance the photocurrent in single-junction solar cells and thus raise the power conversion efficiency from the Shockley-Queisser limit of 33% to 44%. Until now, quantitative SF yield at room temperature has been observed only in crystalline solids or aggregates of oligoacenes. Here, we employ transient absorption spectroscopy, ultrafast photoluminescence spectroscopy, and triplet photosensitization to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes. Crucially, in dilute solution of these systems, SF does not depend on intermolecular interactions. Instead, SF is an intrinsic property of the molecules, with both the fission rate and resulting triplet lifetime determined by the degree of electronic coupling between covalently linked pentacene molecules. We found that the triplet pair lifetime can be as short as 0.5 ns but can be extended up to 270 ns.


Chemical Science | 2014

Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework

Song-Liang Cai; Yue-Biao Zhang; Andrew B. Pun; Bo He; Jinhui Yang; Francesca M. Toma; Ian D. Sharp; Omar M. Yaghi; Jun Fan; Sheng-Run Zheng; Wei-Guang Zhang; Yi Liu

Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m−1 is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.


Journal of the American Chemical Society | 2014

New Form of an Old Natural Dye: Bay-Annulated Indigo (BAI) as an Excellent Electron Accepting Unit for High Performance Organic Semiconductors

Bo He; Andrew B. Pun; Danylo Zherebetskyy; Yao Liu; Feng Liu; Liana M. Klivansky; Alexandra M. McGough; Benjamin A. Zhang; Kelvin Lo; Thomas P. Russell; Lin-Wang Wang; Yi Liu

A novel electron acceptor was synthesized from one-step functionalization of the readily available indigo dye. The resulting bay-annulated indigo (BAI) was utilized for the preparation of a series of novel donor-acceptor small molecules and polymers. As revealed experimentally and by theoretical calculations, substituted BAIs have stronger electron accepting characteristics when compared to several premier electron deficient building blocks. As a result, the donor-acceptor materials incorporating BAI acceptor possess low-lying LUMO energy levels and small HOMO-LUMO gaps. In situ grazing incidence wide-angle X-ray scattering studies of the thin films of BAI donor-acceptor polymers indicated improved crystallinity upon thermal treatment. Field effect transistors based on these polymers show excellent ambipolar transporting behavior, with the hole and electron mobilities reaching 1.5 and 0.41 cm(2) V(-1) s(-1), respectively, affirming BAI as a potent electron accepting unit for high performance organic electronic materials.


ACS central science | 2016

A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers

Eric G. Fuemmeler; Samuel N. Sanders; Andrew B. Pun; Elango Kumarasamy; Tao Zeng; Kiyoshi Miyata; Michael L. Steigerwald; X.-Y. Zhu; Luis M. Campos; Nandini Ananth

Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ∼2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). However, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur via a direct coupling mechanism that is independent of CT states. We show that a near-degeneracy in electronic state energies induced by vibronic coupling to intramolecular modes of the covalent dimer allows for strong mixing between the correlated triplet pair state and the local excitonic state, despite weak direct coupling.


Journal of the American Chemical Society | 2016

Exciton Correlations in Intramolecular Singlet Fission

Samuel N. Sanders; Elango Kumarasamy; Andrew B. Pun; Kannatassen Appavoo; Michael L. Steigerwald; Luis M. Campos

We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.


Angewandte Chemie | 2016

Intramolecular Singlet Fission in Oligoacene Heterodimers.

Samuel N. Sanders; Elango Kumarasamy; Andrew B. Pun; Michael L. Steigerwald; Luis M. Campos

We investigate singlet fission (SF) in heterodimers comprising a pentacene unit covalently bonded to another acene as we systematically vary the singlet and triplet pair energies. We find that these energies control the SF process, where dimers undergo SF provided that the resulting triplet pair energy is similar or lower in energy than the singlet state. In these systems the singlet energy is determined by the lower-energy chromophore, and the rate of SF is found to be relatively independent of the driving force. However, triplet pair recombination in these heterodimers follows the energy gap law. The ability to tune the energies of these materials provides a key strategy to study and design new SF materials-an important process for third-generation photovoltaics.


Chemistry-an Asian Journal | 2012

Synthesis and Properties of Bisphosphole-Bridged Ladder Oligophenylenes

David Hanifi; Andrew B. Pun; Yi Liu

Ladder-type oligophenylenes (LOPP) with bridging heteroatoms are interesting systems as they offer novel electronic and photophysical properties on account of the rigid structural features, more efficient electron delocalization on the coplanar aromatic framework, and strong intermolecular interactions. LOPPs incorporating multiple phosphorous centers combine the excellent electronic properties of phospholes and rigidified conjugated framework of LOPPs, thus positioning themselves as an attractive class of organic semiconductors. To date, there still lacks an effective synthetic methodology towards LOPPs with multiple phosphorous bridges. Herein, we describe the synthesis and properties of a new class of bisphosphole-bridged ladder oligo(p-phenylene)s and the related phosphoxides. The synthesis of phospholes was achieved by a four-fold free-radical phosphanylation reaction of a tetrabromo p-terphenylene or biphenyl-thiophene. Sequential trapping of four highly reactive aryl radicals occurred effectively to give the desired phosphorous-containing ladder compound. The oxides of the phospholes are shown to be strong fluorophores that can be used as potential n-type building blocks for organic semiconducting materials.


Journal of the American Chemical Society | 2017

Tuning Singlet Fission in π-Bridge-π Chromophores

Elango Kumarasamy; Samuel N. Sanders; Murad J. Y. Tayebjee; Amir Asadpoordarvish; Timothy J. H. Hele; Eric G. Fuemmeler; Andrew B. Pun; Lauren M. Yablon; Jonathan Z. Low; Daniel W. Paley; Jacob C. Dean; Bonnie Choi; Gregory D. Scholes; Michael L. Steigerwald; Nandini Ananth; Dane R. McCamey; Luis M. Campos

We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.


Science Advances | 2017

Distinct properties of the triplet pair state from singlet fission

M. Tuan Trinh; Andrew Pinkard; Andrew B. Pun; Samuel N. Sanders; Elango Kumarasamy; Luis M. Campos; Xavier Roy; X.-Y. Zhu

The triplet pair from singlet fission is characterized by distinct spectroscopic signature and can be difficult to break apart. Singlet fission, the conversion of a singlet exciton (S1) to two triplets (2 × T1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→Sn and S1→Sn′ transitions; Sn and Sn′ likely come from the antisymmetric and symmetric linear combinations, respectively, of the S2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→Sn transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T1 state. Using an electron-accepting iron oxide molecular cluster [Fe8O4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.


Organic chemistry frontiers | 2014

Solvent-driven selective π-cation templating in dynamic assembly of interlocked molecules

Andrew B. Pun; Kevin J. Gagnon; Liana M. Klivansky; Simon J. Teat; Zhan-Ting Li; Yi Liu

Both bispyridinium (BPY) and trispyridinium (TPY) have been used to template the formation of linear or triply threaded [2]rotaxanes through imine-based dynamic clipping reactions. In this paper, we report contrasting solvent dependence between these two templated clipping reactions when two different solvents, namely CDCl3 and CD3CN, are used. The solvent dependence is elucidated based on 1H NMR studies, and structural features are revealed by single crystal X-ray analyses of the respective linear and triply threaded interlocked molecules. We have shown that although both clipping reactions are affected by hydrogen-bonding and aromatic–aromatic interactions in general, the nature of the aromatic–aromatic interactions is quite different, which is responsible for the different solvent response. The BPY-based clipping reaction is driven by electrostatic interactions between aromatic surfaces, while the TPY-based reaction is mainly governed by the solvation/desolvation effect (solvophobic interactions). These findings led us to design a rare solvent switchable system. In competition clipping experiments employing both BPY and TPY as the templates, exclusive formation of the BPY-based linear [2]rotaxane can be achieved in pure CDCl3, while in pure CD3CN, a 6.7 : 1 selectivity is achieved in favor of the TPY-based triply threaded [2]rotaxane. The detailed structural analysis of the two [2]rotaxanes as well as the solvent-dependent selectivity, may encourage more integrated approaches for the design of complex molecular architectures.

Collaboration


Dive into the Andrew B. Pun's collaboration.

Top Co-Authors

Avatar

Elango Kumarasamy

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Liu

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Hanifi

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge