Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Z. Low is active.

Publication


Featured researches published by Jonathan Z. Low.


Nature Materials | 2015

A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials.

Erik Busby; Jianlong Xia; Qin Wu; Jonathan Z. Low; Rui Song; John R. Miller; X.-Y. Zhu; Luis M. Campos

The ability to advance our understanding of multiple exciton generation (MEG) in organic materials has been restricted by the limited number of materials capable of singlet fission. A particular challenge is the development of materials that undergo efficient intramolecular fission, such that local order and strong nearest-neighbour coupling is no longer a design constraint. Here we address these challenges by demonstrating that strong intrachain donor-acceptor interactions are a key design feature for organic materials capable of intramolecular singlet fission. By conjugating strong-acceptor and strong-donor building blocks, small molecules and polymers with charge-transfer states that mediate population transfer between singlet excitons and triplet excitons are synthesized. Using transient optical techniques, we show that triplet populations can be generated with yields up to 170%. These guidelines are widely applicable to similar families of polymers and small molecules, and can lead to the development of new fission-capable materials with tunable electronic structure, as well as a deeper fundamental understanding of MEG.


Journal of the American Chemical Society | 2015

Quantitative Intramolecular Singlet Fission in Bipentacenes

Samuel N. Sanders; Elango Kumarasamy; Andrew B. Pun; M. Tuan Trinh; Bonnie Choi; Jianlong Xia; Elliot J. Taffet; Jonathan Z. Low; John R. Miller; Xavier Roy; X.-Y. Zhu; Michael L. Steigerwald; Luis M. Campos

Singlet fission (SF) has the potential to significantly enhance the photocurrent in single-junction solar cells and thus raise the power conversion efficiency from the Shockley-Queisser limit of 33% to 44%. Until now, quantitative SF yield at room temperature has been observed only in crystalline solids or aggregates of oligoacenes. Here, we employ transient absorption spectroscopy, ultrafast photoluminescence spectroscopy, and triplet photosensitization to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes. Crucially, in dilute solution of these systems, SF does not depend on intermolecular interactions. Instead, SF is an intrinsic property of the molecules, with both the fission rate and resulting triplet lifetime determined by the degree of electronic coupling between covalently linked pentacene molecules. We found that the triplet pair lifetime can be as short as 0.5 ns but can be extended up to 270 ns.


Advanced Materials | 2017

Singlet Fission: Progress and Prospects in Solar Cells

Jianlong Xia; Samuel N. Sanders; Wei Cheng; Jonathan Z. Low; Jinping Liu; Luis M. Campos; Taolei Sun

The third generation of photovoltaic technology aims to reduce the fabrication cost and improve the power conversion efficiency (PCE) of solar cells. Singlet fission (SF), an efficient multiple exciton generation (MEG) process in organic semiconductors, is one promising way to surpass the Shockley-Queisser limit of conventional single-junction solar cells. Traditionally, this MEG process has been observed as an intermolecular process in organic materials. The implementation of intermolecular SF in photovoltaic devices has achieved an external quantum efficiency of over 100% and demonstrated significant promise for boosting the PCE of third generation solar cells. More recently, efficient intramolecular SF has been reported. Intramolecular SF materials are modular and have the potential to overcome certain design constraints that intermolecular SF materials possess, which may allow for more facile integration into devices.


Journal of the American Chemical Society | 2017

Tuning Singlet Fission in π-Bridge-π Chromophores

Elango Kumarasamy; Samuel N. Sanders; Murad J. Y. Tayebjee; Amir Asadpoordarvish; Timothy J. H. Hele; Eric G. Fuemmeler; Andrew B. Pun; Lauren M. Yablon; Jonathan Z. Low; Daniel W. Paley; Jacob C. Dean; Bonnie Choi; Gregory D. Scholes; Michael L. Steigerwald; Nandini Ananth; Dane R. McCamey; Luis M. Campos

We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.


Nano Letters | 2016

Mapping the Transmission Functions of Single-Molecule Junctions

Brian Capozzi; Jonathan Z. Low; Jianlong Xia; Zhen-Fei Liu; Jeffrey B. Neaton; Luis M. Campos; Latha Venkataraman

Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range of 1.5 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different exposed areas, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junction Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junctions transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed from first principles. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale.


Science Advances | 2017

A reversible single-molecule switch based on activated antiaromaticity

Xiaodong Yin; Yaping Zang; Liangliang Zhu; Jonathan Z. Low; Zhen-Fei Liu; Jing Cui; Jeffrey B. Neaton; Latha Venkataraman; Luis M. Campos

We use the concept of aromaticity to create an electrochemically activated single-molecule switch. Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope–based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivative that switches to an antiaromatic state with 6-4-6-π electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.


Archive | 2017

CCDC 1579912: Experimental Crystal Structure Determination

Elango Kumarasamy; Samuel N. Sanders; Murad J. Y. Tayebjee; Amir Asadpoordarvish; Timothy J. H. Hele; Eric G. Fuemmeler; Andrew B. Pun; Lauren M. Yablon; Jonathan Z. Low; Daniel W. Paley; Jacob C. Dean; Bonnie Choi; Gregory D. Scholes; Michael L. Steigerwald; NandiniAnanth; Dane R. McCamey; Luis M. Campos

Related Article: Elango Kumarasamy, Samuel N. Sanders, Murad J. Y. Tayebjee, Amir Asadpoordarvish, Timothy J. H. Hele, Eric G. Fuemmeler, Andrew B. Pun, Lauren M. Yablon, Jonathan Z. Low, Daniel W. Paley, Jacob C. Dean, Bonnie Choi, Gregory D. Scholes, Michael L. Steigerwald, NandiniAnanth, Dane R. McCamey, Matthew Y. Sfeir, and Luis M. Campos|2017|J.Am.Chem.Soc.|139|12488|doi:10.1021/jacs.7b05204


Archive | 2017

CCDC 1579913: Experimental Crystal Structure Determination

Elango Kumarasamy; Samuel N. Sanders; Murad J. Y. Tayebjee; Amir Asadpoordarvish; Timothy J. H. Hele; Eric G. Fuemmeler; Andrew B. Pun; Lauren M. Yablon; Jonathan Z. Low; Daniel W. Paley; Jacob C. Dean; Bonnie Choi; Gregory D. Scholes; Michael L. Steigerwald; NandiniAnanth; Dane R. McCamey; Luis M. Campos

Related Article: Elango Kumarasamy, Samuel N. Sanders, Murad J. Y. Tayebjee, Amir Asadpoordarvish, Timothy J. H. Hele, Eric G. Fuemmeler, Andrew B. Pun, Lauren M. Yablon, Jonathan Z. Low, Daniel W. Paley, Jacob C. Dean, Bonnie Choi, Gregory D. Scholes, Michael L. Steigerwald, NandiniAnanth, Dane R. McCamey, Matthew Y. Sfeir, and Luis M. Campos|2017|J.Am.Chem.Soc.|139|12488|doi:10.1021/jacs.7b05204


Chemistry of Materials | 2015

Correlating Structure and Function in Organic Electronics: From Single Molecule Transport to Singlet Fission

Jonathan Z. Low; Samuel N. Sanders; Luis M. Campos


Journal of Physical Chemistry B | 2015

Fast Singlet Exciton Decay in Push–Pull Molecules Containing Oxidized Thiophenes

Erik Busby; Jianlong Xia; Jonathan Z. Low; Qin Wu; Jessica Hoy; Luis M. Campos

Collaboration


Dive into the Jonathan Z. Low's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Pun

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Elango Kumarasamy

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge