Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel N. Sanders is active.

Publication


Featured researches published by Samuel N. Sanders.


Journal of the American Chemical Society | 2015

Quantitative Intramolecular Singlet Fission in Bipentacenes

Samuel N. Sanders; Elango Kumarasamy; Andrew B. Pun; M. Tuan Trinh; Bonnie Choi; Jianlong Xia; Elliot J. Taffet; Jonathan Z. Low; John R. Miller; Xavier Roy; X.-Y. Zhu; Michael L. Steigerwald; Luis M. Campos

Singlet fission (SF) has the potential to significantly enhance the photocurrent in single-junction solar cells and thus raise the power conversion efficiency from the Shockley-Queisser limit of 33% to 44%. Until now, quantitative SF yield at room temperature has been observed only in crystalline solids or aggregates of oligoacenes. Here, we employ transient absorption spectroscopy, ultrafast photoluminescence spectroscopy, and triplet photosensitization to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes. Crucially, in dilute solution of these systems, SF does not depend on intermolecular interactions. Instead, SF is an intrinsic property of the molecules, with both the fission rate and resulting triplet lifetime determined by the degree of electronic coupling between covalently linked pentacene molecules. We found that the triplet pair lifetime can be as short as 0.5 ns but can be extended up to 270 ns.


ACS central science | 2016

A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers

Eric G. Fuemmeler; Samuel N. Sanders; Andrew B. Pun; Elango Kumarasamy; Tao Zeng; Kiyoshi Miyata; Michael L. Steigerwald; X.-Y. Zhu; Luis M. Campos; Nandini Ananth

Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ∼2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). However, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur via a direct coupling mechanism that is independent of CT states. We show that a near-degeneracy in electronic state energies induced by vibronic coupling to intramolecular modes of the covalent dimer allows for strong mixing between the correlated triplet pair state and the local excitonic state, despite weak direct coupling.


Journal of the American Chemical Society | 2016

Exciton Correlations in Intramolecular Singlet Fission

Samuel N. Sanders; Elango Kumarasamy; Andrew B. Pun; Kannatassen Appavoo; Michael L. Steigerwald; Luis M. Campos

We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.


Angewandte Chemie | 2016

Intramolecular Singlet Fission in Oligoacene Heterodimers.

Samuel N. Sanders; Elango Kumarasamy; Andrew B. Pun; Michael L. Steigerwald; Luis M. Campos

We investigate singlet fission (SF) in heterodimers comprising a pentacene unit covalently bonded to another acene as we systematically vary the singlet and triplet pair energies. We find that these energies control the SF process, where dimers undergo SF provided that the resulting triplet pair energy is similar or lower in energy than the singlet state. In these systems the singlet energy is determined by the lower-energy chromophore, and the rate of SF is found to be relatively independent of the driving force. However, triplet pair recombination in these heterodimers follows the energy gap law. The ability to tune the energies of these materials provides a key strategy to study and design new SF materials-an important process for third-generation photovoltaics.


Advanced Materials | 2017

Singlet Fission: Progress and Prospects in Solar Cells

Jianlong Xia; Samuel N. Sanders; Wei Cheng; Jonathan Z. Low; Jinping Liu; Luis M. Campos; Taolei Sun

The third generation of photovoltaic technology aims to reduce the fabrication cost and improve the power conversion efficiency (PCE) of solar cells. Singlet fission (SF), an efficient multiple exciton generation (MEG) process in organic semiconductors, is one promising way to surpass the Shockley-Queisser limit of conventional single-junction solar cells. Traditionally, this MEG process has been observed as an intermolecular process in organic materials. The implementation of intermolecular SF in photovoltaic devices has achieved an external quantum efficiency of over 100% and demonstrated significant promise for boosting the PCE of third generation solar cells. More recently, efficient intramolecular SF has been reported. Intramolecular SF materials are modular and have the potential to overcome certain design constraints that intermolecular SF materials possess, which may allow for more facile integration into devices.


Journal of the American Chemical Society | 2017

Tuning Singlet Fission in π-Bridge-π Chromophores

Elango Kumarasamy; Samuel N. Sanders; Murad J. Y. Tayebjee; Amir Asadpoordarvish; Timothy J. H. Hele; Eric G. Fuemmeler; Andrew B. Pun; Lauren M. Yablon; Jonathan Z. Low; Daniel W. Paley; Jacob C. Dean; Bonnie Choi; Gregory D. Scholes; Michael L. Steigerwald; Nandini Ananth; Dane R. McCamey; Luis M. Campos

We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.


Science Advances | 2017

Distinct properties of the triplet pair state from singlet fission

M. Tuan Trinh; Andrew Pinkard; Andrew B. Pun; Samuel N. Sanders; Elango Kumarasamy; Luis M. Campos; Xavier Roy; X.-Y. Zhu

The triplet pair from singlet fission is characterized by distinct spectroscopic signature and can be difficult to break apart. Singlet fission, the conversion of a singlet exciton (S1) to two triplets (2 × T1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→Sn and S1→Sn′ transitions; Sn and Sn′ likely come from the antisymmetric and symmetric linear combinations, respectively, of the S2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→Sn transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T1 state. Using an electron-accepting iron oxide molecular cluster [Fe8O4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.


Advanced Materials | 2017

Triplet Harvesting from Intramolecular Singlet Fission in Polytetracene

Andrew B. Pun; Samuel N. Sanders; Elango Kumarasamy; Daniel N. Congreve; Luis M. Campos

Singlet fission (SF), a promising mechanism of multiple exciton generation, has only recently been engineered as a fast, efficient, intramolecular process (iSF). The challenge now lies in designing and optimizing iSF materials that can be practically applied in high-performance optoelectronic devices. However, most of the reported iSF systems, such as those based on donor-acceptor polymers or pentacene, have low triplet energies, which limits their applications. Tetracene-based materials can overcome significant challenges, as the tetracene triplet state is practically useful, ≈1.2 eV. Here, the synthesis and excited state dynamics of a conjugated tetracene homopolymer are studied. This polymer undergoes ultrafast iSF in solution, generating high-energy triplets on a sub-picosecond time scale. Magnetic-field-dependent photocurrent measurements of polytetracene-based devices demonstrate the first example of iSF-generated triplet extraction in devices, exhibiting the potential of iSF materials for use in next-generation devices.


Archive | 2017

CCDC 1579912: Experimental Crystal Structure Determination

Elango Kumarasamy; Samuel N. Sanders; Murad J. Y. Tayebjee; Amir Asadpoordarvish; Timothy J. H. Hele; Eric G. Fuemmeler; Andrew B. Pun; Lauren M. Yablon; Jonathan Z. Low; Daniel W. Paley; Jacob C. Dean; Bonnie Choi; Gregory D. Scholes; Michael L. Steigerwald; NandiniAnanth; Dane R. McCamey; Luis M. Campos

Related Article: Elango Kumarasamy, Samuel N. Sanders, Murad J. Y. Tayebjee, Amir Asadpoordarvish, Timothy J. H. Hele, Eric G. Fuemmeler, Andrew B. Pun, Lauren M. Yablon, Jonathan Z. Low, Daniel W. Paley, Jacob C. Dean, Bonnie Choi, Gregory D. Scholes, Michael L. Steigerwald, NandiniAnanth, Dane R. McCamey, Matthew Y. Sfeir, and Luis M. Campos|2017|J.Am.Chem.Soc.|139|12488|doi:10.1021/jacs.7b05204


Archive | 2017

CCDC 1579913: Experimental Crystal Structure Determination

Elango Kumarasamy; Samuel N. Sanders; Murad J. Y. Tayebjee; Amir Asadpoordarvish; Timothy J. H. Hele; Eric G. Fuemmeler; Andrew B. Pun; Lauren M. Yablon; Jonathan Z. Low; Daniel W. Paley; Jacob C. Dean; Bonnie Choi; Gregory D. Scholes; Michael L. Steigerwald; NandiniAnanth; Dane R. McCamey; Luis M. Campos

Related Article: Elango Kumarasamy, Samuel N. Sanders, Murad J. Y. Tayebjee, Amir Asadpoordarvish, Timothy J. H. Hele, Eric G. Fuemmeler, Andrew B. Pun, Lauren M. Yablon, Jonathan Z. Low, Daniel W. Paley, Jacob C. Dean, Bonnie Choi, Gregory D. Scholes, Michael L. Steigerwald, NandiniAnanth, Dane R. McCamey, Matthew Y. Sfeir, and Luis M. Campos|2017|J.Am.Chem.Soc.|139|12488|doi:10.1021/jacs.7b05204

Collaboration


Dive into the Samuel N. Sanders's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elango Kumarasamy

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Pun

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murad J. Y. Tayebjee

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge