Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Blue is active.

Publication


Featured researches published by Andrew Blue.


Medical Physics | 2007

Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

C. D. Arvanitis; Sarah E. Bohndiek; Gary J. Royle; Andrew Blue; H. X. Liang; A. Clark; M. Prydderch; R. Turchetta; Robert D. Speller

Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525 x 525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25 x 25 microm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10(5) electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 microm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at approximately 0.44 microC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a: Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to structured CsI:Tl can be used for conventional and advanced digital mammography due to their low noise, high resolution performance.


Journal of Applied Physics | 2005

Photocurrent in epitaxial GaN

Marcello Salis; Alberto Anedda; F. Quarati; Andrew Blue; W. Cunningham

A simple kinetic model concerning photocurrent in epitaxially grown GaN is presented. Utilizing a minimal set of rate equations and kinetic parameters, it is shown that in the presence of hole centers with small probabilities of electron-hole recombinations, the time dependence of photocurrent is ruled by competition between capture of conduction bandelectrons by deep electron traps and electron-hole recombinations. If the probability of electron capture exceeds that of recombination, the decay of current after excitation is turned off shows the usual persistent photocurrent trend. If, on the contrary, the probability of recombination is larger than that of electron capture, a slow photocurrent quenching, past a maximum, can be observed. In some circumstances, after excitation is turned off, the current drops below the steady dark current, at which point the negative persistent photoconductivity effect comes into play.


Journal of Instrumentation | 2016

Charge collection studies in irradiated HV-CMOS particle detectors

A. Affolder; M. Andelković; K. Arndt; R. L. Bates; Andrew Blue; D. Bortoletto; Craig Buttar; P. Caragiulo; V. Cindro; D. Das; J. Dopke; A. Dragone; F. Ehrler; V. Fadeyev; Z. Galloway; A. Gorišek; H. M. X. Grabas; I. M. Gregor; P. Grenier; A. A. Grillo; L.B.A. Hommels; T. B. Huffman; J. John; K. Kanisauskas; C. J. Kenney; G. Kramberger; Z. Liang; I. Mandić; D. Maneuski; S. McMahon

Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.


Journal of Instrumentation | 2015

Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

D. Maneuski; R. Bates; Andrew Blue; C. Buttar; K. Doonan; L. Eklund; E.N. Gimenez; D. Hynds; S. Kachkanov; Juha Kalliopuska; T. McMullen; V. O'Shea; N. Tartoni; R. Plackett; S. Vahanen; K. Wraight

Silicon sensor technologies with reduced dead area at the sensors perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.


Journal of Instrumentation | 2014

A double-sided, shield-less stave prototype for the ATLAS Upgrade strip tracker for the High Luminosity LHC

S. Diez; C. Haber; R Witharm; A. Affolder; Phillip Allport; F. Anghinolfi; R. L. Bates; G. A. Beck; V. Benitez; J. Bernabeu; G. Blanchot; I. Bloch; Andrew Blue; P. Booker; Richard Brenner; Craig Buttar; G. Casse; J. Carroll; I. Church; J.V. Civera; P. Dervan; V. Fadeyev; P. Farthouat; D. Ferrere; C. Friedrich; R. French; B. J. Gallop; C. Garcia; C. Garcia-Argos; M.D. Gibson

A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools.


Journal of Instrumentation | 2015

HV/HR-CMOS sensors for the ATLAS upgrade-concepts and test chip results

Jie Liu; M. Backhaus; M. Barbero; R. L. Bates; Andrew Blue; Frederic Bompard; P. Breugnon; Craig Buttar; M. Capeans; J. C. Clemens; S. Feigl; D. Ferrere; Denis Fougeron; M. Garcia-Sciveres; M. George; S. Godiot-Basolo; L. Gonella; S. Gonzalez-Sevilla; J. Große-Knetter; T. Hemperek; F. Hügging; D. Hynds; G. Iacobucci; C. Kreidl; H. Krüger; A. La Rosa; A. Miucci; D. Muenstermann; M. Nessi; T. Obermann

In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given.


Journal of Instrumentation | 2016

Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project

B. T. Huffman; A. Affolder; K. Arndt; R. L. Bates; M. Benoit; F. A. Di Bello; Andrew Blue; D. Bortoletto; M. Buckland; Craig Buttar; P. Caragiulo; D. Das; J. Dopke; A. Dragone; F. Ehrler; V. Fadeyev; Z. Galloway; H. M. X. Grabas; I. M. Gregor; P. Grenier; A. A. Grillo; M. R. Hoeferkamp; L.B.A. Hommels; J. John; K. Kanisauskas; C. J. Kenney; J. Kramberger; Z. Liang; I. Mandić; D. Maneuski

The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with the AMS H35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper.


Journal of Instrumentation | 2014

A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC

S. Gonzalez-Sevilla; A. Affolder; Phillip Allport; F. Anghinolfi; G. Barbier; R. L. Bates; G. A. Beck; V. Benitez; J. Bernabeu; G. Blanchot; I. Bloch; Andrew Blue; P. Booker; Richard Brenner; Craig Buttar; F. Cadoux; G. Casse; J. Carroll; I. Church; J.V. Civera; A. Clark; P. Dervan; S. Diez; M. Endo; V. Fadeyev; P. Farthouat; Y. Favre; D. Ferrere; C. Friedrich; R. French

The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail.


IEEE Transactions on Electron Devices | 2010

eLeNA: A Parametric CMOS Active-Pixel Sensor for the Evaluation of Reset Noise Reduction Architectures

Thalis Anaxagoras; Paul Kent; Nigel M. Allinson; R. Turchetta; Tim Pickering; D. Maneuski; Andrew Blue; Val O'Shea

We present a novel complementary metal-oxide-semiconductor (CMOS) active-pixel sensor imager that incorporates different reset schemes to achieve lower reset noise levels. The sensor, eLeNA, features a 448 × 512 array with a pixel pitch of 15 μm, fabricated using a 0.18- μm CMOS process. Fourteen sections and five different reset methods were employed. Without using pinned diodes, we implanted structures for correlated double sampling. A noise of 6 e- is measured with a conversion gain of 49 μV/e-. We will discuss various applications for the reset method that achieved the best overall performance, considering leakage current and read noise.


Ultrafast Phenomena in Semiconductors and Nanostructure Materials XI and Semiconductor Photodetectors IV | 2007

Optical and x-ray characterization of two novel CMOS image sensors

Sarah E. Bohndiek; C. D. Arvanitis; C. Venanzi; Gary J. Royle; A. Clark; Jamie Crooks; M. Prydderch; R. Turchetta; Andrew Blue; Robert D. Speller

A UK consortium (MI3) has been founded to develop advanced CMOS pixel designs for scientific applications. Vanilla, a 520x520 array of 25&mgr;m pixels benefits from flushed reset circuitry for low noise and random pixel access for region of interest (ROI) readout. OPIC, a 64x72 test structure array of 30&mgr;m digital pixels has thresholding capabilities for sparse readout at 3,700fps. Characterization is performed with both optical illumination and x-ray exposure via a scintillator. Vanilla exhibits 34±3e- read noise, interactive quantum efficiency of 54% at 500nm and can read a 6x6 ROI at 24,395fps. OPIC has 46±3e- read noise and a wide dynamic range of 65dB due to high full well capacity. Based on these characterization studies, Vanilla could be utilized in applications where demands include high spectral response and high speed region of interest readout while OPIC could be used for high speed, high dynamic range imaging.

Collaboration


Dive into the Andrew Blue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Clark

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Turchetta

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. M. Gregor

University of Wuppertal

View shared research outputs
Top Co-Authors

Avatar

A. Affolder

Santa Cruz Institute for Particle Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge