Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Singer is active.

Publication


Featured researches published by Andrew C. Singer.


Trends in Biotechnology | 2003

Secondary plant metabolites in phytoremediation and biotransformation

Andrew C. Singer; David E. Crowley; Ian P. Thompson

For millennia, secondary plant metabolites have antagonized microorganisms, insects and humans alike, ultimately generating a complex and dynamic mixture of facultative and obligate interactions from symbioses to pathogenicity. Secondary plant metabolites have an important role in developing the myriad of organic pollutant-degrading enzymes found in nature. The link between secondary plant metabolites and enzymatic diversity has yet to be exploited, with potential applications in fields as varied as pest management, bioremediation and fine chemical production.


Applied and Environmental Microbiology | 2009

Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell raman-fluorescence in situ hybridization

Wei E. Huang; Andrew Ferguson; Andrew C. Singer; Kathryn Lawson; Ian P. Thompson; Robert M. Kalin; Michael J. Larkin; Mark J. Bailey; Andrew S. Whiteley

ABSTRACT Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (13C)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 μM. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.


Applied Microbiology and Biotechnology | 2000

Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria

Andrew C. Singer; E. S. Gilbert; David E. Crowley

Abstract Partial bioremediation of polychlorinated biphenyl (PCB)-contaminated soil was achieved by repeated applications of PCB-degrading bacteria and a surfactant applied 34 times over an 18-week period. Two bacterial species, Arthrobacter sp. strain B1B and Ralstonia eutrophus H850, were induced for PCB degradation by carvone and salicylic acid, respectively, and were complementary for the removal of different PCB congeners. A variety of application strategies was examined utilizing a surfactant, sorbitan trioleate, which served both as a carbon substrate for the inoculum and as a detergent for the mobilization of PCBs. In soil containing 100 μg Aroclor 1242 g−1 soil, bioaugmentation resulted in 55–59% PCB removal after 34 applications. However, most PCB removal occurred within the first 9 weeks. In contrast, repeated addition of surfactant and carvone to non-inoculated soil resulted in 30–36% PCB removal by the indigenous soil bacteria. The results suggest that bioaugmentation with surfactant-grown, carvone-induced, PCB-degrading bacteria may provide an effective treatment for partial decontamination of PCB-contaminated soils.


Environmental Health Perspectives | 2006

Potential risks associated with the proposed widespread use of Tamiflu

Andrew C. Singer; Miles A. Nunn; Ernest A. Gould; Andrew C. Johnson

Background The threat of pandemic influenza has focused attention and resources on virus surveillance, prevention, and containment. The World Health Organization has strongly recommended the use of the antiviral drug Tamiflu both to treat and prevent pandemic influenza infection. A major concern for the long-term efficacy of this strategy is to limit the development of Tamiflu-resistant influenza strains. However, in the event of a pandemic, hundreds of millions of courses of Tamiflu, stockpiled globally, will be rapidly deployed. Given its apparent resistance to biodegradation and hydrophilicity, oseltamivir carboxylate (OC), the active antiviral and metabolite of Tamiflu, is predicted to enter receiving riverwater from sewage treatment works in its active form. Objective Our objective in this study was to determine the likely concentrations of OC released into U.S. and U.K. river catchments using hydrologic modeling and current assumptions about the course and management of an influenza pandemic. Discussion We predict that high concentrations of OC (micrograms per liter) capable of inhibiting influenza virus replication would be sustained for periods of several weeks, presenting an increased risk for the generation of antiviral resistance and genetic exchange between influenza viruses in wildfowl. Owing to the apparent recalcitrance of OC in sewage treatment works, widespread use of Tamiflu during an influenza pandemic also poses a potentially significant, uncharacterized, ecotoxicologic risk in each affected nation’s waterways. Conclusion To gauge the hazard presented by Tamiflu use during a pandemic, we recommend a) direct measurement of Tamiflu persistence, biodegradation, and transformation in the environment; b) further modeling of likely drug concentrations in the catchments of countries where humans and waterfowl come into frequent close contact, and where significant Tamiflu deployment is envisaged; and c) further characterization of the risks of generating Tamiflu-resistant viruses in OC-exposed wildfowl.


The ISME Journal | 2008

Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil

Marina Héry; Andrew C. Singer; Deepak Kumaresan; Levente Bodrossy; Nancy Stralis-Pavese; James I. Prosser; Ian P. Thompson; J. Colin Murrell

In the United Kingdom, landfills are the primary anthropogenic source of methane emissions. Methanotrophic bacteria present in landfill biocovers can significantly reduce methane emissions via their capacity to oxidize up to 100% of the methane produced. Several biotic and abiotic parameters regulate methane oxidation in soil, such as oxygen, moisture, methane concentration and temperature. Earthworm-mediated bioturbation has been linked to an increase in methanotrophy in a landfill biocover soil (AC Singer et al., unpublished), but the mechanism of this trophic interaction remains unclear. The aims of this study were to determine the composition of the active methanotroph community and to investigate the interactions between earthworms and bacteria in this landfill biocover soil where the methane oxidation activity was significantly increased by the earthworms. Soil microcosms were incubated with 13C-CH4 and with or without earthworms. DNA and RNA were extracted to characterize the soil bacterial communities, with a particular emphasis on methanotroph populations, using phylogenetic (16S ribosomal RNA) and functional methane monooxygenase (pmoA and mmoX) gene probes, coupled with denaturing gradient-gel electrophoresis, clone libraries and pmoA microarray analyses. Stable isotope probing (SIP) using 13C-CH4 substrate allowed us to link microbial function with identity of bacteria via selective recovery of ‘heavy’ 13C-labelled DNA or RNA and to assess the effect of earthworms on the active methanotroph populations. Both types I and II methanotrophs actively oxidized methane in the landfill soil studied. Results suggested that the earthworm-mediated increase in methane oxidation rate in the landfill soil was more likely to be due to the stimulation of bacterial growth or activity than to substantial shifts in the methanotroph community structure. A Bacteroidetes-related bacterium was identified only in the active bacterial community of earthworm-incubated soil but its capacity to actually oxidize methane has to be proven.


Applied and Environmental Microbiology | 2007

Nutrient Amendments in Soil DNA Stable Isotope Probing Experiments Reduce the Observed Methanotroph Diversity

Aurélie Cébron; Levente Bodrossy; Nancy Stralis-Pavese; Andrew C. Singer; Ian P. Thompson; James I. Prosser; J. Colin Murrell

ABSTRACT Stable isotope probing (SIP) can be used to analyze the active bacterial populations involved in a process by incorporating 13C-labeled substrate into cellular components such as DNA. Relatively long incubation times are often used with laboratory microcosms in order to incorporate sufficient 13C into the DNA of the target organisms. Addition of nutrients can be used to accelerate the processes. However, unnatural concentrations of nutrients may artificially change bacterial diversity and activity. In this study, methanotroph activity and diversity in soil was examined during the consumption of 13CH4 with three DNA-SIP experiments, using microcosms with natural field soil water conditions, the addition of water, and the addition of mineral salts solution. Methanotroph population diversity was studied by targeting 16S rRNA and pmoA genes. Clone library analyses, denaturing gradient gel electrophoresis fingerprinting, and pmoA microarray hybridization analyses were carried out. Most methanotroph diversity (type I and type II methanotrophs) was observed in nonamended SIP microcosms. Although this treatment probably best reflected the in situ environmental conditions, one major disadvantage of this incubation was that the incorporation of 13CH4 was slow and some cross-feeding of 13C occurred, thereby leading to labeling of nonmethanotroph microorganisms. Conversely, microcosms supplemented with mineral salts medium exhibited rapid consumption of 13CH4, resulting in the labeling of a less diverse population of only type I methanotrophs. DNA-SIP incubations using water-amended microcosms yielded faster incorporation of 13C into active methanotrophs while avoiding the cross-feeding of 13C.


Environmental Toxicology and Chemistry | 2003

Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil

Andrew C. Singer; Daniel Smith; William A. Jury; Khoiviet Hathuc; David E. Crowley

This study investigated the interactive effects of bioaugmentation, biostimulation, and the rhizosphere during remediation of Aroclor 1242-contaminated soil. Treatments were repeatedly augmented with polychlorinated bipheny (PCB)-degrading bacteria, inducers (carvone and salicylic acid), surfactant (sorbitan trioleate), minimal salts medium in a 20-cm high soil column, or a combination of these elements. Soils containing a single Brassica nigra plant achieved 61% PCB removal in the 0 to 2 and 2 to 6 cm depths after 9 weeks of bioaugmentation, whereas only 43 and 14% PCB removal, respectively, was achieved in unplanted controls. Gas diffusion coefficients of 13.0 and 5.0 x 10(-7) m2 s(-1) were calculated from a methane diffusion assay for planted and unplanted soils respectively, indicating the positive effect of plant roots on gas diffusion into the soil. A second, modified column study removed 87, 73, 63, and 45% of PCB after 12 weeks in the 0 to 5, 5 to 11, 11 to 26, and 26 to 35 cm depths, respectively, in planted-bioaugmented soils, whereas 65, 54, 53, and 47% of PCB was removed from the planted-minimal salts treatment, respectively. Shifts in the soil microbial community structure were demonstrated by denaturing gradient gel electrophoresis of bacterial 16S ribosomal DNA. Results support that Brassica nigra directly contributed to accelerated PCB removal by increased oxygen diffusion, amendment infiltration, and microbial enrichment.


Frontiers in Microbiology | 2016

Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators

Andrew C. Singer; Helen E. Shaw; Vicki Rhodes; Alwyn Hart

The environment is increasingly being recognized for the role it might play in the global spread of clinically relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, and biocides). Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR) action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England’s regulator) as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: (1) AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and (2) AMR Action Plans are deficient partly because the science to inform policy is lacking and this needs to be addressed.


Chemosphere | 2010

Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles.

Robert J. Barnes; Olga Riba; Murray N. Gardner; Andrew C. Singer; Simon A. Jackman; Ian P. Thompson

Iron (Fe) nanoparticles are increasingly being employed for the remediation of Chlorinated Aliphatic Hydrocarbon (CAH) contaminated sites. However, these particles have recently been reported to be cytotoxic to bacterial cells, and may therefore have a negative impact on exposed microbial communities. The overall objective of this study was to investigate the impact of Fe nanoparticles on the biodegradation of CAHs by an indigenous dechlorinating bacterial community. Also, to determine the most appropriate combination and/or application of bimetallic (Ni/Fe) nanoparticles and dechlorinating bacteria for the remediation of CAH contaminated sites. Addition of Fe nanoparticles to groundwater collected from a CAH contaminated site in Derby, UK, led to a decrease in the oxidation-reduction potential (ORP) and an increase in pH. The biological degradation rate of TCE was observed to progressively decrease in the presence of increasing Fe nanoparticle concentrations; which ranged from 0.01 to 0.1 gL(-1), and cease completely at concentrations of 0.3 gL(-1) or above. Concentrations greater than 0.3 gL(-1) led to a decline in viable bacterial counts and the inhibition of biological sulphate reduction. The most appropriate means of combining bimetallic (Ni/Fe) nanoparticles and indigenous dechlorinating bacteria was to employ a two step process: initially stimulating the biodegradation of TCE using acetate, followed by the addition of bimetallic nanoparticles to degrade the remaining cis-1,2-DCE and VC.


The ISME Journal | 2015

Validated predictive modelling of the environmental resistome

Gregory C. A. Amos; Emma Gozzard; Charlotte E. Carter; A. Mead; Michael J. Bowes; Peter M. Hawkey; Lihong Zhang; Andrew C. Singer; William H. Gaze; Elizabeth M. H. Wellington

Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.

Collaboration


Dive into the Andrew C. Singer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Bowes

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja Lehmann

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Whiteley

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Bailey

Mansfield University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Thomas Bell

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge