Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Campbell is active.

Publication


Featured researches published by Andrew Campbell.


Journal of Biological Chemistry | 2012

Astrocytes Secrete Exosomes Enriched with Proapoptotic Ceramide and Prostate Apoptosis Response 4 (PAR-4): POTENTIAL MECHANISM OF APOPTOSIS INDUCTION IN ALZHEIMER DISEASE (AD)*

Guanghu Wang; Michael B. Dinkins; Qian He; Gu Zhu; Christophe Poirier; Andrew Campbell; Margot Mayer-Pröschel; Erhard Bieberich

Background: In AD, amyloid protein is associated with neurodegeneration, which may involve amyloid effects on astrocytes. Results: In astrocytes, amyloid peptide triggers secretion of proapoptotic exosomes (“apoxosomes”) that are associated with ceramide and PAR-4. Conclusion: Activation of nSMase2 and expression of PAR-4 is critical for the secretion of apoxosomes and glial apoptosis. Significance: Apoxosomes may contribute to glial apoptosis, and therefore, neurodegeneration in AD. Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease.


Leukemia Research | 2011

Acute lymphoblastic leukemia cells that survive combination chemotherapy in vivo remain sensitive to allogeneic immune effects

Johan Jansson; Yu-Chiao Hsu; Igor Kuzin; Andrew Campbell; Craig A. Mullen

Allogeneic hematopoietic stem cell transplantation is often performed for patients with acute lymphoblastic leukemia (ALL) whose disease has relapsed after chemotherapy treatment. However, graft versus leukemia (GVL) effects in ALL are generally weak and the mechanisms of this weakness are unknown. These studies tested the hypothesis that ALL cells that have survived conventional chemotherapy in vivo acquire relative resistance to the allogeneic GVL effect. C57BL/6 mice were injected with murine pre-B ALL lines driven by human mutations and then were treated with combination chemotherapy. ALL cells surviving therapy were analysed in vitro and in vivo for acquisition of resistance to chemotherapy, radiation, cytolytic T cells, NK cells, LAK cells and cytokines. In vivo drug treatment did lead to leukemia population with more rapid proliferation and also decreased sensitivity to vincristine, doxorubicin and radiation. However, drug treatment did not produce ALL populations that were less sensitive to GVL effects in vitro or in vivo.


Cell Death & Differentiation | 2015

cFLIP is critical for oligodendrocyte protection from inflammation

D C Tanner; Andrew Campbell; K M O'Banion; Mark Noble; Margot Mayer-Pröschel

Neuroinflammation associated with degenerative central nervous system disease and injury frequently results in oligodendrocyte death. While promoting oligodendrocyte viability is a major therapeutic goal, little is known about protective signaling strategies. We report that in highly purified rat oligodendrocytes, interferon gamma (IFNγ) activates a signaling pathway that protects these cells from tumor necrosis factor alpha (TNFα)-induced cytotoxicity. IFNγ protection requires Jak (Janus kinase) activation, components of the integrated stress response and NF-κB activation. Although NF-κB activation also occurred transiently in the absence of IFNγ and presence of TNFα, this activation was not sufficient to prevent induction of the TNFα-responsive cell death pathway. Genetic inhibition of NF-κB translocation to the nucleus abrogated IFNγ-mediated protection and did not change the cell death induced by TNFα, suggesting that NF-κB activation via IFNγ induces a different set of responses than activation of NF-κB via TNFα. A promising candidate is the NF-κB target cFLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein), which is protease-deficient caspase homolog that inhibits caspase-3 activation. We show that IFNγ-mediated protection led to upregulation of cFLIP. Overexpression of cFLIP was sufficient for oligodendrocyte protection from TNFα and short hairpin RNA knockdown of cFLIP-abrogated IFNγ -mediated protection. To determine the relevance of our in vitro finding to the more complex in vivo situation, we determined the impact on oligodendrocyte death of regional cFLIP loss of function in a murine model of neuroinflammation. Our data show that downregulation of cFLIP during inflammation leads to death of oligodendrocytes and decrease of myelin in vivo. Taken together, we show that IFNγ-mediated induction of cFLIP expression provides a new mechanism by which this cytokine can protect oligodendrocytes from TNFα-induced cell death.


Biology of Blood and Marrow Transplantation | 2008

High-risk acute lymphoblastic leukemia cells with bcr-abl and INK4A/ARF mutations retain susceptibility to alloreactive T cells.

Faith Young; Andrew Campbell; Kris Lambert Emo; Johan Jansson; Pin-Yi Wang; Craig T. Jordan; Craig A. Mullen

INK4A/ARF mutations are acquired in bcr/abl(+) lymphoid blast phase chronic myelogenous leukemia (CML) and bcr/abl(+) acute lymphoblastic leukemia (ALL). Donor lymphocyte infusion and graft-versus-leukemia (GVL) are generally ineffective in such ALLs, whereas GVL is highly active against bcr/abl(+) CML, which does not have a lesion in the INK4A/ARF locus. The mechanisms for the ineffectiveness of GVL are not fully known, and it is possible that intrinsic resistance of acute lymphoid leukemias to immune effectors associated with allogeneic GVL may contribute to ineffectiveness. This work tested the hypothesis that INK4A/ARF mutations that are associated with transformation of bcr/abl(+) CML to an ALL phenotype, and that are associated with increased resistance to apoptosis render ALL cells insensitive to allogeneic immune responses to minor histocompatibility antigens (mHA). Murine acute pre-B ALLs were induced by transfer of the human p210 bcr/abl gene into bone marrow of INK4A/ARF null mice. These ALL lines were then studied in a murine model of MHC-matched, mHA-mismatched allogeneic BMT. In vivo growth of these ALLs was inhibited in allogeneic transplants characterized by active allogeneic immune responses compared to their behavior in syngeneic transplants. In vitro ALLs with INK4A/ARF, p210 bcr/abl, or p190 bcr/abl mutations remained sensitive to anti-mHA cytolytic T cells. In addition, the ALLs were capable of inducing primary immune responses to mHAs in vivo. Thus, ALLs with INK4A/ARF or bcr/abl mutations are not intrinsically resistant to allogeneic T cell responses, suggesting that active immunotherapies against mHA have the potential to control such acute lymphoblastic leukemias.


Scientific Reports | 2017

Expression of the Human Herpesvirus 6A Latency-Associated Transcript U94A Disrupts Human Oligodendrocyte Progenitor Migration

Andrew Campbell; Jessica M. Hogestyn; Christopher J. Folts; Brittany Lopez; Christoph Pröschel; David J. Mock; Margot Mayer-Pröschel

Progression of demyelinating diseases is caused by an imbalance of two opposing processes: persistent destruction of myelin and myelin repair by differentiating oligodendrocyte progenitor cells (OPCs). Repair that cannot keep pace with destruction results in progressive loss of myelin. Viral infections have long been suspected to be involved in these processes but their specific role remains elusive. Here we describe a novel mechanism by which HHV-6A, a member of the human herpesvirus family, may contribute to inadequate myelin repair after injury.


Glia | 2016

Mutation of ataxia–telangiectasia mutated is associated with dysfunctional glutathione homeostasis in cerebellar astroglia

Andrew Campbell; Jared Bushman; Joshua Munger; Mark Noble; Christoph Pröschel; Margot Mayer-Pröschel

Astroglial dysfunction plays an important role in neurodegenerative diseases otherwise attributed to neuronal loss of function. Here we focus on the role of astroglia in ataxia–telangiectasia (A–T), a disease caused by mutations in the ataxia–telangiectasia mutated (ATM) gene. A hallmark of A–T pathology is progressive loss of cerebellar neurons, but the mechanisms that impact neuronal survival are unclear. We now provide a possible mechanism by which A–T astroglia affect the survival of cerebellar neurons. As astroglial functions are difficult to study in an in vivo setting, particularly in the cerebellum where these cells are intertwined with the far more numerous neurons, we conducted in vitro coculture experiments that allow for the generation and pharmacological manipulation of purified cell populations. Our analyses revealed that cerebellar astroglia isolated from Atm mutant mice show decreased expression of the cystine/glutamate exchanger subunit xCT, glutathione (GSH) reductase, and glutathione‐S‐transferase. We also found decreased levels of intercellular and secreted GSH in A–T astroglia. Metabolic labeling of l‐cystine, the major precursor for GSH, revealed that a key component of the defect in A–T astroglia is an impaired ability to import this rate‐limiting precursor for the production of GSH. This impairment resulted in suboptimal extracellular GSH supply, which in turn impaired survival of cerebellar neurons. We show that by circumventing the xCT‐dependent import of l‐cystine through addition of N‐acetyl‐l‐cysteine (NAC) as an alternative cysteine source, we were able to restore GSH levels in A–T mutant astroglia providing a possible future avenue for targeted therapeutic intervention. GLIA 2016;64:227–239


Human Molecular Genetics | 2015

A novel mouse model for Ataxia-telangiectasia with a N-terminal mutation displays a behavioral defect and a low incidence of lymphoma but no increased oxidative burden

Andrew Campbell; Brittany Krupp; Jared Bushman; Mark Noble; Christoph Pröschel; Margot Mayer-Pröschel

Ataxia-telangiectasia (A-T) is a rare multi-system disorder caused by mutations in the ATM gene. Significant heterogeneity exists in the underlying genetic mutations and clinical phenotypes. A number of mouse models have been generated that harbor mutations in the distal region of the gene, and a recent study suggests the presence of residual ATM protein in the brain of one such model. These mice recapitulate many of the characteristics of A-T seen in humans, with the notable exception of neurodegeneration. In order to study how an N-terminal mutation affects the disease phenotype, we generated an inducible Atm mutant mouse model (Atm(tm1Mmpl/tm1Mmpl), referred to as A-T [M]) predicted to express only the first 62 amino acids of Atm. Cells derived from A-T [M] mutant mice exhibited reduced cellular proliferation and an altered DNA damage response, but surprisingly, showed no evidence of an oxidative imbalance. Examination of the A-T [M] animals revealed an altered immunophenotype consistent with A-T. In contrast to mice harboring C-terminal Atm mutations that disproportionately develop thymic lymphomas, A-T [M] mice developed lymphoma at a similar rate as human A-T patients. Morphological analyses of A-T [M] cerebella revealed no substantial cellular defects, similar to other models of A-T, although mice display behavioral defects consistent with cerebellar dysfunction. Overall, these results suggest that loss of Atm is not necessarily associated with an oxidized phenotype as has been previously proposed and that loss of ATM protein is not sufficient to induce cerebellar degeneration in mice.


Cancer Immunology, Immunotherapy | 2010

Differential gene expression in acute lymphoblastic leukemia cells surviving allogeneic transplant

Jessica C. Shand; Johan Jansson; Yu-Chiao Hsu; Andrew Campbell; Craig A. Mullen

The effectiveness of allogeneic graft-versus-leukemia (GVL) activity in control of acute lymphoblastic leukemia is generally regarded as poor. One possible factor is dynamic adaptation of the leukemia cell to the allogeneic environment. This work tested the hypothesis that the pattern of gene expression in acute lymphoblastic leukemia cells in an allogeneic environment would differ from that in a non-allogeneic environment. Expression microarray studies were performed in murine B lineage acute lymphoblastic leukemia cells recovered from mice that had undergone allogeneic MHC-matched but minor histocompatibility antigen mismatched transplants. A limited number of genes were found to be differentially expressed in ALL cells surviving in the allogeneic environment. Functional analysis demonstrated that genes related to immune processes, antigen presentation, ubiquitination and GTPase function were significantly enriched. Several genes with known immune activities potentially relevant to leukemia survival (Ly6a/Sca-1, TRAIL and H2-T23) were examined in independent validation experiments. Increased expression in vivo in allogeneic hosts was observed, and could be mimicked in vitro with soluble supernatants of mixed lymphocyte reactions or interferon-gamma. The changes in gene expression were reversible when the leukemia cells were removed from the allogeneic environment. These findings suggest that acute lymphoblastic leukemia cells respond to cytokines present after allogeneic transplantation and that these changes may reduce the effectiveness of GVL activity.


Biology of Blood and Marrow Transplantation | 2011

Evidence of B cell immune responses to acute lymphoblastic leukemia in murine allogeneic hematopoietic stem cell transplantation recipients treated with donor lymphocyte infusion and/or vaccination.

Craig A. Mullen; Andrew Campbell; Olena Tkachenko; Johan Jansson; Yu-Chiao Hsu

These experiments explored mechanisms of control of acute lymphoblastic leukemia (ALL) following allogeneic hematopoietic stem cell transplantation using a murine model of MHC-matched, minor histocompatibility antigen-mismatched transplantation. The central hypothesis examined was that addition of active vaccination against leukemia cells would substantially increase the effectiveness of allogeneic donor lymphocyte infusion (DLI) against ALL present in the host after transplantation. Although vaccination did increase the magnitude of type I T cell responses against leukemia cells associated with DLI, it did not lead to substantial improvement in long-term survival. Analysis of immunologic mechanisms of leukemia progression demonstrated that the failure of vaccination was not because of antigen loss in leukemia cells. However, analysis of survival provided surprising findings that, in addition to very modest type I T cell responses, a B cell response that produced antibodies that bind leukemia cells was found in long-term survivors. The risk of death from leukemia was significantly lower in recipients that had higher levels of such antibodies. These studies raise the hypothesis that stimulation of B cell responses after transplantation may provide a novel way to enhance allogeneic graft-versus-leukemia effects associated with transplantation.


Blood | 1994

Modeling human lymphoid precursor cell gene therapy in the SCID-hu mouse

Ramesh Akkina; Joseph D. Rosenblatt; Andrew Campbell; Irvin S. Y. Chen; Jerome A. Zack

Collaboration


Dive into the Andrew Campbell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Chiao Hsu

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Noble

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Craig T. Jordan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Faith Young

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge