Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Pröschel is active.

Publication


Featured researches published by Christoph Pröschel.


Cell | 1996

LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition.

J.Michael Frangiskakis; Amanda K. Ewart; Colleen A. Morris; Carolyn B. Mervis; Jacquelyn Bertrand; Byron F. Robinson; Bonita P. Klein; Gregory J. Ensing; Lorraine A. Everett; Eric D. Green; Christoph Pröschel; N.J. Gutowski; Mark Noble; Donald L. Atkinson; Shannon J. Odelberg; Mark T. Keating

To identify genes important for human cognitive development, we studied Williams syndrome (WS), a developmental disorder that includes poor visuospatial constructive cognition. Here we describe two families with a partial WS phenotype; affected members have the specific WS cognitive profile and vascular disease, but lack other WS features. Submicroscopic chromosome 7q11.23 deletions cosegregate with this phenotype in both families. DNA sequence analyses of the region affected by the smallest deletion (83.6 kb) revealed two genes, elastin (ELN) and LIM-kinase1 (LIMK1). The latter encodes a novel protein kinase with LIM domains and is strongly expressed in the brain. Because ELN mutations cause vascular disease but not cognitive abnormalities, these data implicate LIMK1 hemizygosity in imparied visuospatial constructive cognition.


Experimental Neurology | 2004

Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration

Caitlin E. Hill; Christoph Pröschel; Mark Noble; Margot Mayer-Pröschel; John C. Gensel; Michael S. Beattie; Jacqueline C. Bresnahan

Transplantation of stem cells and immature cells has been reported to ameliorate tissue damage, induce axonal regeneration, and improve locomotion following spinal cord injury. However, unless these cells are pushed down a neuronal lineage, the majority of cells become glia, suggesting that the alterations observed may be potentially glially mediated. Transplantation of glial-restricted precursor (GRP) cells--a precursor cell population restricted to oligodendrocyte and astrocyte lineages--offers a novel way to examine the effects of glial cells on injury processes and repair. This study examines the survival and differentiation of GRP cells, and their ability to modulate the development of the lesion when transplanted immediately after a moderate contusion injury of the rat spinal cord. GRP cells isolated from a transgenic rat that ubiquitously expresses heat-stable human placental alkaline phosphatase (PLAP) were used to unambiguously detect transplanted GRP cells. Following transplantation, some GRP cells differentiated into oligodendrocytes and astrocytes, retaining their differentiation potential after injury. Transplanted GRP cells altered the lesion environment, reducing astrocytic scarring and the expression of inhibitory proteoglycans. Transplanted GRP cells did not induce long-distance regeneration from corticospinal tract (CST) and raphe-spinal axons when compared to control animals. However, GRP cell transplants did alter the morphology of CST axons toward that of growth cones, and CST fibers were found within GRP cell transplants, suggesting that GRP cells may be able to support axonal growth in vivo after injury.


Journal of Biology | 2008

Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury

Jeannette E. Davies; Christoph Pröschel; Ningzhe Zhang; Mark Noble; Margot Mayer-Pröschel; Stephen J. A. Davies

Background Two critical challenges in developing cell-transplantation therapies for injured or diseased tissues are to identify optimal cells and harmful side effects. This is of particular concern in the case of spinal cord injury, where recent studies have shown that transplanted neuroepithelial stem cells can generate pain syndromes. Results We have previously shown that astrocytes derived from glial-restricted precursor cells (GRPs) treated with bone morphogenetic protein-4 (BMP-4) can promote robust axon regeneration and functional recovery when transplanted into rat spinal cord injuries. In contrast, we now show that transplantation of GRP-derived astrocytes (GDAs) generated by exposure to the gp130 agonist ciliary neurotrophic factor (GDAsCNTF), the other major signaling pathway involved in astrogenesis, results in failure of axon regeneration and functional recovery. Moreover, transplantation of GDACNTF cells promoted the onset of mechanical allodynia and thermal hyperalgesia at 2 weeks after injury, an effect that persisted through 5 weeks post-injury. Delayed onset of similar neuropathic pain was also caused by transplantation of undifferentiated GRPs. In contrast, rats transplanted with GDAsBMP did not exhibit pain syndromes. Conclusion Our results show that not all astrocytes derived from embryonic precursors are equally beneficial for spinal cord repair and they provide the first identification of a differentiated neural cell type that can cause pain syndromes on transplantation into the damaged spinal cord, emphasizing the importance of evaluating the capacity of candidate cells to cause allodynia before initiating clinical trials. They also confirm the particular promise of GDAs treated with bone morphogenetic protein for spinal cord injury repair.


PLOS ONE | 2011

Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury

Stephen J. A. Davies; Chung-Hsuan Shih; Mark Noble; Margot Mayer-Pröschel; Jeannette E. Davies; Christoph Pröschel

Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system.


Nature Medicine | 2005

EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy.

Jorg Dietrich; Michelle Lacagnina; David Gass; Eric K. Richfield; Margot Mayer-Pröschel; Mark Noble; Carlos F. Torres; Christoph Pröschel

Vanishing white matter disease (VWM) is a heritable leukodystrophy linked to mutations in translation initiation factor 2B (eIF2B). Although the clinical course of this disease has been relatively well described, the cellular consequences of EIF2B mutations on neural cells are unknown. Here we have established cell cultures from the brain of an individual with VWM carrying mutations in subunit 5 of eIF2B (encoded by EIF2B5). Despite the extensive demyelination apparent in this VWM patient, normal-appearing oligodendrocytes were readily generated in vitro. In contrast, few GFAP-expressing (GFAP+) astrocytes were present in primary cultures, induction of astrocytes was severely compromised, and the few astrocytes generated showed abnormal morphologies and antigenic phenotypes. Lesions in vivo also lacked GFAP+ astrocytes. RNAi targeting of EIF2B5 severely compromised the induction of GFAP+ cells from normal human glial progenitors. This raises the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM leukodystrophy.


Experimental Neurology | 2011

Glial restricted precursor cell transplant with cyclic adenosine monophosphate improved some autonomic functions but resulted in a reduced graft size after spinal cord contusion injury in rats

Yvette S. Nout; Esther Culp; Markus H. Schmidt; C. Amy Tovar; Christoph Pröschel; Margot Mayer-Pröschel; Mark Noble; Michael S. Beattie; Jacqueline C. Bresnahan

Transplantation of glial restricted precursor (GRP) cells has been shown to reduce glial scarring after spinal cord injury (SCI) and, in combination with neuronal restricted precursor (NRP) cells or enhanced expression of neurotrophins, to improve recovery of function after SCI. We hypothesized that combining GRP transplants with rolipram and cAMP would improve functional recovery, similar to that seen after combining Schwann cell transplants with increasing cAMP. A short term study, (1) uninjured control, (2) SCI+vehicle, and (3) SCI+cAMP, showed that spinal cord [cAMP] was increased 14days after SCI. We used 51 male rats subjected to a thoracic SCI for a 12-week survival study: (1) SCI+vehicle, (2) SCI+GRP, (3) SCI+cAMP, (4) SCI+GRP+cAMP, and (5) uninjured endpoint age-matched control (AM). Rolipram was administered for 2weeks after SCI. At 9days after SCI, GRP transplantation and injection of dibutyryl-cAMP into the spinal cord were performed. GRP cells survived, differentiated, and formed extensive transplants that were well integrated with host tissue. Presence of GRP cells increased the amount of tissue in the lesion; however, cAMP reduced the graft size. White matter sparing at the lesion epicenter was not affected. Serotonergic input to the lumbosacral spinal cord was not affected by treatment, but the amount of serotonin immediately caudal to the lesion was reduced in the cAMP groups. Using telemetric monitoring of corpus spongiosum penis pressure we show that the cAMP groups regained the same number of micturitions per 24hours when compared to the AM group, however, the frequency of peak pressures was increased in these groups compared to the AM group. In contrast, the GRP groups had similar frequency of peak pressures compared to baseline and the AM group. Animals that received GRP cells regained the same number of erectile events per 24hours compared to baseline and the AM group. Since cAMP reduced the GRP transplant graft, and some modest positive effects were seen that could be attributable to both GRP or cAMP, future research is required to determine how cAMP affects survival, proliferation, and/or function of progenitor cells and how this is related to function. cAMP may not always be a desirable addition to a progenitor cell transplantation strategy after SCI.


Embo Molecular Medicine | 2014

Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons

Christoph Pröschel; Jennifer Stripay; Chung-Hsuan Shih; Joshua Munger; Mark Noble

In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically‐relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAsBMP, that are generated in vitro by directed differentiation of glial precursors. GDAsBMP produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAsBMP also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDABMP transplantation into the 6‐hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDABMP transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin+ GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin‐1 and 2 by GDAsBMP, increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAsBMP offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation.


The Journal of Neuroscience | 2014

Astroglial-Derived Periostin Promotes Axonal Regeneration after Spinal Cord Injury

Chung-Hsuan Shih; Michelle Lacagnina; Kelly Leuer-Bisciotti; Christoph Pröschel

Traumatic spinal cord injury (SCI) results in a cascade of tissue responses leading to cell death, axonal degeneration, and glial scar formation, exacerbating the already hostile environment and further inhibiting axon regeneration. Overcoming these inhibitory cues and promoting axonal regeneration is one of the primary targets in developing a cure for SCI. Previously, we demonstrated that transplantation of bone morphogenetic protein (BMP)-induced astrocytes derived from embryonic glial-restricted precursors (GDAsBMP) promotes extensive axonal growth and motor function recovery in a rodent spinal cord injury model. Here, we identify periostin (POSTN), a secreted protein, as a key component of GDABMP-induced axonal regeneration. POSTN is highly expressed by GDAsBMP and the perturbation of POSTN expression by shRNA diminished GDABMP-induced neurite extension in vitro. We also found that recombinant POSTN is sufficient to overcome the inhibitory effect of scar-associated molecules and promote neurite extension in vitro by signaling through focal adhesion kinase and Akt. Furthermore, transplantation of POSTN-deficient GDAsBMP into the injured rat spinal cord resulted in compromised axonal regeneration, indicating that POSTN plays an essential role in GDABMP-mediated axonal regeneration. This finding reveals not only one of the major mechanisms underlying GDABMP-dependent recovery from SCI, but also the potential of POSTN as a therapeutic agent for traumatic injury of the CNS.


Current Opinion in Neurology | 2011

Cell therapies for the central nervous system: how do we identify the best candidates?

Mark Noble; Margot Mayer-Pröschel; Jeannette E. Davies; Stephen J. A. Davies; Christoph Pröschel

PURPOSE OF REVIEW Central to the obstacles to be overcome in moving promising cell-based therapies from the laboratory to the clinic is that of determining which of the many cell types being examined are optimal for repairing particular lesions. RECENT FINDINGS Our studies on astrocyte replacement therapies demonstrate clearly that some cells are far better than others at promoting recovery in spinal cord injury and that, at least in some cases, transplanting undifferentiated precursor cells is far less useful than transplanting specific astrocytes derived from those precursor cells. But further comparison between different approaches is hindered by the difficulties in replicating results between laboratories, even for well defined pharmacological agents and bioactive proteins. These difficulties in replication appear most likely to be due to unrecognized nuances in lesion characteristics and in the details of delivery of therapies. SUMMARY We propose that the challenge of reproducibility provides a critical opportunity for refining cell-based therapies. If the utility of a particular approach is so restricted that even small changes in lesions or treatment protocols eliminate benefit, then the variability inherent in clinical injuries will frustrate translation. In contrast, rising to this challenge may enable discovery of refinements needed to confer the robustness needed for successful clinical trials.


Free Radical Biology and Medicine | 2015

Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment.

Mark Noble; Margot Mayer-Pröschel; Zaibo Li; Tiefei Dong; Wanchang Cui; Christoph Pröschel; Ibro Ambeskovic; Joerg Dietrich; Ruolan Han; Yin Miranda Yang; Christopher Folts; Jennifer Stripay; Hsing-Yu Chen; Brett M. Stevens

This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.

Collaboration


Dive into the Christoph Pröschel's collaboration.

Top Co-Authors

Avatar

Mark Noble

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeannette E. Davies

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stephen J. A. Davies

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

N.J. Gutowski

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung-Hsuan Shih

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge